JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE ISOPERIMETRIC DEFICIT UPPER LIMIT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE ISOPERIMETRIC DEFICIT UPPER LIMIT
Zhou, Jiazu; Ma, Lei; Xu, Wenxue;
  PDF(new window)
 Abstract
In this paper, the reverse Bonnesen style inequalities for convex domain in the Euclidean plane are investigated. The Minkowski mixed convex set of two convex sets K and L is studied and some new geometric inequalities are obtained. From these inequalities obtained, some isoperimetric deficit upper limits, that is, the reverse Bonnesen style inequalities for convex domain K are obtained. These isoperimetric deficit upper limits obtained are more fundamental than the known results of Bottema ([5]) and Pleijel ([22]).
 Keywords
convex domain;the Minkowski mixed area;the isoperimetric deficit upper limit;the Bonnesen style inequality;the reverse Bonnesen style inequality;
 Language
English
 Cited by
1.
Bonnesen-style Wulff isoperimetric inequality, Journal of Inequalities and Applications, 2017, 2017, 1  crossref(new windwow)
2.
On containment measure and the mixed isoperimetric inequality, Journal of Inequalities and Applications, 2013, 2013, 1, 540  crossref(new windwow)
3.
Reverse Bonnesen style inequalities in a surface $$\mathbb{X}_\varepsilon ^2$$ of constant curvature, Science China Mathematics, 2013, 56, 6, 1145  crossref(new windwow)
4.
Bonnesen-style symmetric mixed inequalities, Journal of Inequalities and Applications, 2016, 2016, 1  crossref(new windwow)
 References
1.
T. F. Banchoff and W. F. Pohl, A generalization of the isoperimetric inequality, J. Differential Geometry 6 (1971/72), 175-192.

2.
J. Bokowski and E. Heil, Integral representation of quermassintegrals and Bonnesenstyle inequalities, Arch. Math. (Basel) 47 (1986), no. 1, 79-89. crossref(new window)

3.
T. Bonnesen, Les problems des isoperimetres et des isepiphanes, Gauthier-Villars, Paris, 1929.

4.
T. Bonnesen and W. Fenchel, Theorie der konvexen Koeper, 2nd ed., Berlin-Heidelberg-New York, 1974.

5.
O. Bottema, Eine obere Grenze fur das isoperimetrische Defizit ebener Kurven, Nederl. Akad. Wetensch. Proc. A66 (1933), 442-446.

6.
Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag Berlin Heidelberg, 1988.

7.
V. Diskant, A generalization of Bonnesen's inequalities, Soviet Math. Dokl. 14 (1973), 1728-1731 (Transl. of Dokl. Akad. Nauk SSSR 213 (1973), 519-521).

8.
H. Flanders, A proof of Minkowski's inequality for convex curves, Amer. Math. Monthly 75 (1968), 581-593. crossref(new window)

9.
E. Grinberg, S. Li, G. Zhang, and J. Zhou, Integral Geometry and Convexity, Proceedings of the International Conference, World Scientific, 2006.

10.
E. Grinberg, D. Ren, and J. Zhou, The symetric isoperimetric deficit and the containment problem in a plan of constant curvature, preprint.

11.
L. Gysin, The isoperimetric inequality for nonsimple closed curves, Proc. Amer. Math. Soc. 118 (1993), no. 1, 197-203. crossref(new window)

12.
H. Hadwiger, Die isoperimetrische Ungleichung in Raum, Elemente der Math. 3 (1948), 25-38.

13.
H. Hadwiger, Vorlesungen uber Inhalt, Oberflache und Isoperimetrie, Springer, Berlin, 1957.

14.
G. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambradge Univ. Press, Cambradge/New York, 1952.

15.
R. Howard, The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2779-2787. crossref(new window)

16.
W. Y. Hsiang, An elementary proof of the isoperimetric problem, Chinese Ann. Math. Ser. A 23 (2002), no. 1, 7-12.

17.
C. C. Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. of Math. 73 (1961), no. 2, 213-220. crossref(new window)

18.
H. Ku, M. Ku, and X. Zhang, Isoperimetric inequalities on surfaces of constant curvature, Canad. J. Math. 49 (1997), no. 6, 1162-1187. crossref(new window)

19.
M. Li and J. Zhou, An upper limit for the isoperimetric deficit of convex set in a plane of constant curvature, Sci. in China 53 (2010), no. 8, 1941-1946. crossref(new window)

20.
R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182-1238. crossref(new window)

21.
R. Osserman, Bonnesen-style isoperimetric inequality, Amer. Math. Monthly 86 (1979), no. 1, 1-29. crossref(new window)

22.
A. Pleijel, On konvexa kurvor, Nordisk Math. Tidskr. 3 (1955), 57-64.

23.
G. Polya and G. Szego, Isoperimetric inequalities in mathematical physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.

24.
D. Ren, Topics in Integral Geometry, World Scientific, Sigapore, 1994.

25.
L. A. Santalo, Integral Geometry and Geometric Probability, Reading, MA: Addison-Wesley, 1976.

26.
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.

27.
E. Teufel, A generalization of the isoperimetric inequality in the hyperbolic plane, Arch. Math. 57 (1991), no. 5, 508-513. crossref(new window)

28.
E. Teufel, Isoperimetric inequalities for closed curves in spaces of constant curvature, Results Math. 22 (1992), no. 1-2, 622-630. crossref(new window)

29.
J. L. Weiner, A generalization of the isoperimetric inequality on the 2-sphere, Indiana Univ. Math. J. 24 (1974), 243-248. crossref(new window)

30.
J. L. Weiner, Isoperimetric inequalities for immersed closed spherical curves, Proc. Amer. Math. Soc. 120 (1994), no. 2, 501-506. crossref(new window)

31.
S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. Ec. Norm. Super. Paris 8 (1975), no. 4, 487-507.

32.
G. Zhang and J. Zhou, Containment measures in integral geometry, Integral geometry and convexity, 153-168, World Sci. Publ., Hackensack, NJ, 2006.

33.
J. Zhou, On Bonnesen-type inequalities, Acta. Math. Sinica, Chinese Series 50 (2007), no. 6, 1397-1402.

34.
J. Zhou and F. Chen, The Bonnesen-type inequalities in a plane of constant curvature, J. Korean Math. Soc. 44 (2007), no. 6, 1363-1372. crossref(new window)

35.
J. Zhou, Y. Du, and F. Cheng, Some Bonnesen-style inequalities for higher dimensions, to appear in Acta. Math. Sinica.

36.
J. Zhou and L. Ma, The discrete isoperimetric deficit upper bound, preprint.

37.
J. Zhou and D. Ren, Geometric inequalities from the viewpoint of integral geometry, Acta Math. Sci. Ser. A Chin. Ed. 30 (2010), no. 5, 1322-1339.

38.
J. Zhou, Y. Xia, and C. Zeng, Some new Bonnesen-style inequalities, J. Korean Math. Soc. 48 (2011), no. 2, 421-430. crossref(new window)

39.
C. Zeng, J. Zhou, and S. Yue, The symmetric mixed isoperimetric inequality of two planar convex domains, Acta Math. Sinica 55 (2012), no. 3, 355-362.