JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NONEMPTY INTERSECTION THEOREMS AND SYSTEM OF GENERALIZED VECTOR EQUILIBRIUM PROBLEMS IN FC-SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NONEMPTY INTERSECTION THEOREMS AND SYSTEM OF GENERALIZED VECTOR EQUILIBRIUM PROBLEMS IN FC-SPACES
He, Rong-Hua; Li, Hong-Xu;
  PDF(new window)
 Abstract
By using some existence theorems of maximal elements for a family of set-valued mappings involving a better admissible set-valued mapping under noncompact setting of FC-spaces, we present some non-empty intersection theorems for a family in product FC-spaces. Then, as applications, some new existence theorems of equilibrium for a system of generalized vector equilibrium problems are proved in product FC-spaces. Our results improve and generalize some recent results.
 Keywords
maximal element;nonempty intersection theorem;system of generalized vector equilibrium problems;product FC-space;
 Language
English
 Cited by
 References
1.
Q. H. Ansari, I. V. Konnov, and J.-C. Yao, On generalized vector equilibrium problems, Nonlinear Anal. 47 (2001), no. 1, 543-554. crossref(new window)

2.
Q. H. Ansari, S. Schaible, and J. Y. Yao, System of vector equilibrium problems and its applications, J. Optim. Theory Appl. 107 (2000), no. 3, 547-557. crossref(new window)

3.
Q. H. Ansari, A. H. Siddiqi, and S. Y. Wu, Existence and duality of generalized vector equilibrium problems, J. Math. Anal. Appl. 259 (2001), no. 1, 115-126. crossref(new window)

4.
C. M. Chen, KKM property and fixed point theorems in metric spaces, J. Math. Anal. Appl. 323 (2006), no. 2, 1231-1237. crossref(new window)

5.
C. M. Chen and T. H. Chang, Some results for the family KKM(X, Y ) and the ${\Phi}-mapping$, J. Math. Anal. Appl. 329 (2007), no. 1, 92-101. crossref(new window)

6.
C. M. Chen, T. H. Chang, and Y. P. Liao, Coincidence theorems, generalized variational inequality theorems and minimax inequality theorems for the ${\Phi}-mapping$ on G-convex spaces, Fixed Point Theory Appl. 2007 (2007), Art. ID 78696, 13 pp.

7.
P. Deguire and M. Lassonde, Families selectantes, Topol. Methods Nonlinear Anal. 5 (1995), no. 2, 261-269. crossref(new window)

8.
P. Deguire, K. K. Tan, and X. Z. Yuan, The study of maximal elements, fixed points for $L_S-majorized$ mappings and their applications to minimax and variational inequalities in product topological spaces, Nonlinear Anal. 37 (1999), no. 7, 933-951. crossref(new window)

9.
X. P. Ding, New H − KKM theorems and their applications to geometric property, coincidence theorems, minimax inequality and maximal elements, Indian J. Pure Appl. Math. 26 (1995), no. 1, 1-19.

10.
X. P. Ding, Fixed points, minimax inequalities and equilibria of noncompact abstract economies, Taiwanese J. Math. 2 (1998), no. 1, 25-55. crossref(new window)

11.
X. P. Ding, Maximal elements for GB-majorized mappings in product G-convex spaces. II, Appl. Math. Mech. 24 (2003), no. 9, 1017-1024. crossref(new window)

12.
X. P. Ding, Nonempty intersection theorems and system of generalized vector equilibrium problems in product G-convex spaces, Appl. Math. Mech. 25 (2004), no. 6, 618-626. crossref(new window)

13.
X. P. Ding, Maximal elements theorems in product FC-spaces and generalized games, J. Math. Anal. Appl. 305 (2005), no. 1, 29-42. crossref(new window)

14.
X. P. Ding, Nonempty intersection theorems and generalized multi-objective games in product FC-spaces, J. Global Optim. 37 (2007), no. 1, 63-73.

15.
X. P. Ding and J. Y. Park, Fixed points and generalized vector equilibrium problems in generalized convex spaces, Indian J. Pure Appl. Math. 34 (2003), no. 6, 973-990.

16.
Ky Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), no. 4, 519-537. crossref(new window)

17.
F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978), pp. 151-186, Wiley, Chichester, 1980.

18.
F. Giannessi, Vector Variational Inequalities and Vector Equilibria Mathematics Theories, Kiuwer Academic Publishers, London, 2000.

19.
J. Guillerme, Nash equilibrium for set-valued maps, J. Math. Anal. Appl. 187 (1994), no. 3, 705-715. crossref(new window)

20.
R. H. He and Y. Zhang, Some maximal elements theorems in FC-spaces, J. Inequal. Appl., doi:10.1155/2009/905605.

21.
M. Lassonde, Fixed point for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), no. 1, 46-60. crossref(new window)

22.
L. J. Lin, Z. T. Yu, and G. Kassay, Existence of equilibria for multivalued mappings and its application to vectorial equilibria, J. Optim. Theory Appl. 114 (2002), no. 1, 189-208. crossref(new window)

23.
S. Park and H. Kim, Coincidence theorems on a product of generalized convex spaces and applications to equilibria, J. Korean. Math. Soc. 36 (1999), no. 4, 813-828.