JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL FOR TUBE DOMAIN OF INFINITE TYPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL FOR TUBE DOMAIN OF INFINITE TYPE
Lee, Hanjin;
  PDF(new window)
 Abstract
The asymptotic expansions of the Bergman kernels on the diagonals near the boundary points of exponentially-flat infinite type for pseudoconvex tube domain in are obtained.
 Keywords
Bergman kernel;infinite type;tube domains;
 Language
English
 Cited by
 References
1.
G. Bharali, On the growth of the Bergman kernel near an infinite-type point, Math. Ann. 347 (2010), no. 1, 1-13. crossref(new window)

2.
H. P. Boas, E. J. Straube, and J. Yu, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), no. 3, 449-461. crossref(new window)

3.
D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math Z. 200 (1989), no. 3, 429-466. crossref(new window)

4.
S. Cho, Boundary behavior of the Bergman kernel function on some pseudoconvex domains in ${\mathbb{C}^n}$, Trans. Amer. Math. Soc. 345 (1994), no. 2, 803-817.

5.
K. Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187 (1970), 9-36. crossref(new window)

6.
K. Diederich, G. Herbort, and T. Ohsawa, The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann. 273 (1986), no. 3, 471-478. crossref(new window)

7.
C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. crossref(new window)

8.
L. Hormander, $L^2$ estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89-152. crossref(new window)

9.
J. Kamimoto, Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\mathbb{C}^2}$, Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), no. 1, 51-85. crossref(new window)

10.
J. Kamimoto, Newton polyhedra and the Bergman kernel, Math. Z. 246 (2004), no. 3, 405-440. crossref(new window)

11.
J. Kamimoto, The Bergman kernel on tube domain of finite type, J. Math. Sci. Univ. Tokyo 13 (2006), no. 3, 365-408.

12.
K. Kim and S. Lee, Asymptotic behavior of the Bergman kernel and associated invariants in certain infinite type pseudoconvex domains, Forum Math. 14 (2002), no. 5, 775-795.

13.
A. Koranyi, The Bergman kernel function for tubes over convex cones, Pacific J. Math. 12 (1962), no. 1, 1355-1359. crossref(new window)

14.
J. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), 108-139. crossref(new window)

15.
E. V. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Math. Obsc. 12 (1963), 303-358; Trans. Moscow Math. Soc. 12 (1963), 303-358.