JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A POSTERIORI L(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A POSTERIORI L(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS
Hou, Tianliang;
  PDF(new window)
 Abstract
In this paper, we discuss the a posteriori error estimates of the semidiscrete mixed finite element methods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order . Using mixed elliptic reconstruction method, a posterior -error estimates for both the state and the control approximation are derived. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.
 Keywords
a posteriori error estimates;optimal control problems;hyperbolic equations;elliptic reconstruction;semidiscrete mixed finite element methods;
 Language
English
 Cited by
1.
A posteriori error estimates of the lowest order Raviart-Thomas mixed finite element methods for convective diffusion optimal control problems, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
2.
A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
3.
A posteriori error estimates of mixed finite element solutions for fourth order parabolic control problems, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
 References
1.
S. Adjerid, A posteriori finite element error estimation for second-order hyperbolic problems, Comput. Methods Appl. Mech. Engry. 191 (2002), no. 41-42, 4699-4719. crossref(new window)

2.
N. Arada, E. Casas, and F. Troltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), no. 2, 201-229. crossref(new window)

3.
I. Babuska, M. Feistauer, and P. Solin, On one approach to a posteriori error estimates for evolution problems solved by the method of lines, Numer. Math. 89 (2001), no. 2, 225-256. crossref(new window)

4.
I. Babuska and S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equations, Comput. Methods Appl. Mech. Engry. 190 (2001), no. 35-36, 4691-4712. crossref(new window)

5.
I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability, Oxford University press, Oxford, 2001.

6.
G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal. 13 (1976), no. 4, 564-576. crossref(new window)

7.
G. A. Baker and J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal Numer. 13 (1979), no. 2, 75-100. crossref(new window)

8.
G. A. Baker and V. A. Dougalis, On the $L^{\infty}-convergence$ of Galerkin approximations for second order hyperbolic equations, Math. Comp. 34 (1980), no. 150, 401-424.

9.
W. Bangerth and R. Rannacher, Finite element approximation of the acoustic wave equation: error control and mesh adaptation, East-West J. Numer. Math. 7 (1999), no. 4, 263-282.

10.
W. Bangerth and R. Rannacher, Adaptive finite element techniques for the acoustic wave equation, J. Comput. Acoust. 9 (2001), no. 2, 575-591. crossref(new window)

11.
E. Becache, P. Joly, and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal. 37 (2000), no. 4, 1053-1084. crossref(new window)

12.
C. Bernardi and E. Suli, Time and Space adaptivity for the second-order wave equation, Math. Models Methods Anal. Sci. 15 (2005), no. 2, 199-225. crossref(new window)

13.
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991.

14.
H. Brunner and N. Yan, Finite element methods for optimal control problems governed by integral equations and integro-differential equations, Numer. Math. 101 (2005), no. 1, 1-27. crossref(new window)

15.
C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465-476. crossref(new window)

16.
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Internat. J. Numer. Methods Engrg. 75 (2008), no. 8, 881-898. crossref(new window)

17.
Y. Chen, Y. Huang, W. B. Liu, and N. N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput. 42 (2010), no. 3, 382-403. crossref(new window)

18.
Y. Chen and W. B. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Comp. Appl. Math. 211 (2008), no. 1, 76-89. crossref(new window)

19.
A. Demlow, O. Lakkis, and C. Makridakis, A posteriori error estimates in the maximum norm for parabolic problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 2157-2176. crossref(new window)

20.
V. A. Dougalis and S. M. Serbin, On the efficiency of some fully discrete Galerkin methods for second-order hyperbolic equations, Comput. Math. Appl. 7 (1981), no. 3, 261-279.

21.
J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52. crossref(new window)

22.
K. Eriksson and C. Johnson, Adaptive finite elements methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43-77. crossref(new window)

23.
W. Gong and N. Yan, A posteriori error estimate for boundary control problems gov- erned by the parabolic partial differential equations, J. Comput. Math. 27 (2009), no. 1, 68-88.

24.
J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, Chichester, UK, 1988.

25.
L. Hou and J. C. Turner, Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math. 71 (1995), no. 3, 289-315. crossref(new window)

26.
C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), no. 1-2, 177-129.

27.
C. Johnson, Y. Nie, and V. Thomee, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem, SIAM J. Numer. Anal. 27 (1990), no. 2, 277-291. crossref(new window)

28.
G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim. 20 (1982), no. 3, 414-427. crossref(new window)

29.
O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627-1658. crossref(new window)

30.
R. Li,W. Liu, H.Ma, and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002), no. 5, 1321-1349. crossref(new window)

31.
J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.

32.
J. Lions and E. Magenes, Non homogeneous boundary value problems and applications, Grandlehre B. 181, Springer-Verlag, 1972.

33.
W. Liu, H. Ma, T. Tang, and N. Yan, A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations, SIAM J. Numer. Anal. 42 (2004), no. 3, 1032-1061. crossref(new window)

34.
W. Liu and N. Yan, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 73-99. crossref(new window)

35.
W. Liu and N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal. 40 (2002), no. 5, 1850-1869. crossref(new window)

36.
C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585-1594. crossref(new window)

37.
C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems, Numer. Math. 104 (2006), no. 4, 489-514. crossref(new window)

38.
R. Mcknight and W. Bosarge, The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control Optim. 11 (1973), 510-524. crossref(new window)

39.
P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, M. Dekker, New York, 1994.

40.
R. H. Nochetto, G. Savare, and C. Verdi, A posteriori error estimates for variable time step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), no. 5, 525-589. crossref(new window)