JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SINGULARITIES AND STRICTLY WANDERING DOMAINS OF TRANSCENDENTAL SEMIGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SINGULARITIES AND STRICTLY WANDERING DOMAINS OF TRANSCENDENTAL SEMIGROUPS
Huang, Zhi Gang; Cheng, Tao;
  PDF(new window)
 Abstract
In this paper, the dynamics on a transcendental entire semigroup G is investigated. We show the possible values of any limit function of G in strictly wandering domains and Fatou components, respectively. Moreover, if G is of class , for any in a Fatou domain, there does not exist a sequence of G such that as .
 Keywords
transcendental semigroup;strictly wandering domain;limit function;singularity;
 Language
English
 Cited by
1.
The dynamics of semigroups of transcendental entire functions I, Indian Journal of Pure and Applied Mathematics, 2015, 46, 1, 11  crossref(new windwow)
2.
Semigroups of transcendental entire functions and their dynamics, Proceedings - Mathematical Sciences, 2017, 127, 2, 349  crossref(new windwow)
3.
The dynamics of semigroups of transcendental entire functions II, Indian Journal of Pure and Applied Mathematics, 2016, 47, 3, 409  crossref(new windwow)
 References
1.
I. N. Baker, Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I. 467 (1970), 2-11.

2.
I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563-576.

3.
I. N. Baker, Limit functions in wandering domains of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 499-505.

4.
W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), no. 2, 151-188. crossref(new window)

5.
W. Bergweiler, M. Haruke, H. Kriete, H. G. Meier, and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 369-375.

6.
W. Bergweiler and Y. F. Wang, On the dynamics of composite entire functions, Ark. Mat. 36 (1998), no. 1, 31-39. crossref(new window)

7.
A. E. Eremenko and M. Y. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020. crossref(new window)

8.
A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions. I, Proc. London Math. Soc. (3) 73 (1996), no. 2, 358-384.

9.
A. Hinkkanen and G. J. Martin, Julia sets of rational semigroups, Math. Z. 222 (1996), no. 2, 161-169. crossref(new window)

10.
M. R. Perez, Sur une question de Dulac et Fatou, C. R. Acad. Sci. Paris Ser. I Math. 321 (1995), no. 8, 1045-1048.

11.
K. K. Poon, Fatou-Julia theory on transcendental semigroups, Bull. Austral. Math. Soc. 58 (1998), no. 3, 403-410. crossref(new window)

12.
K. K. Poon, Fatou-Julia theory on transcendental semigroups. II, Bull. Austral. Math. Soc. 59 (1999), no. 2, 257-262. crossref(new window)

13.
D. Sullivan, Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401-418. crossref(new window)

14.
J. H. Zheng, Singularities and wandering domains in iteration of meromorphic functions, Illinois J. Math. 44 (2000), no. 3, 520-530.

15.
J. H. Zheng, Singularities and limit functions in iteration of meromorphic functions, J. London Math. Soc. (2) 67 (2003), no. 1, 195-207. crossref(new window)

16.
J. H. Zheng, Iteration of functions which are meromorphic outside a small set, Tohoku Math. J. (2) 57 (2005), no. 1, 23-43. crossref(new window)

17.
J. H. Zheng, On transcendental meromorphic functions which are geometrically finite, J. Aust. Math. Soc. 72 (2002), no. 1, 93-107. crossref(new window)