JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PURE INJECTIVE REPRESENTATIONS OF QUIVERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PURE INJECTIVE REPRESENTATIONS OF QUIVERS
Hosseini, Esmaeil;
  PDF(new window)
 Abstract
Let R be a ring and be a quiver. In this paper we give another definition of purity in the category of quiver representations. Under such definition we prove that the class of all pure injective representations of by R-modules is preenveloping. In case is a left rooted semi-co-barren quiver and R is left Noetherian, we show that every cotorsion flat representation of is pure injective. If, furthermore, R is -perfect and is a flat representation , then the pure injective dimension of is at most .
 Keywords
representation of quiver;pure monomorphism;pure injective representation;cotorsion representation;flat representation;pure injective resolution;
 Language
English
 Cited by
1.
ABSOLUTELY PURE REPRESENTATIONS OF QUIVERS,;;

대한수학회지, 2014. vol.51. 6, pp.1177-1187 crossref(new window)
1.
ABSOLUTELY PURE REPRESENTATIONS OF QUIVERS, Journal of the Korean Mathematical Society, 2014, 51, 6, 1177  crossref(new windwow)
 References
1.
E. Enochs and S. Estrada, Projective representations of quivers, Comm. Algebra 33 (2005), no. 10, 3467-3478. crossref(new window)

2.
E. Enochs, S. Estrada, and J. R. Garcia Rozas, Injective representations of infinite quivers. Applications, Canad. J. Math. 61 (2009), no. 2, 315-335. crossref(new window)

3.
E. Enochs, S. Estrada, J. Garcia Rozas, and L. Oyonarte, Flat covers of representations of the quiver $A_{\infty}$, Int. J. Math. Math. Sci. 2003 (2003), no. 70, 4409-4419. crossref(new window)

4.
E. Enochs, S. Estrada, and S. Ozdemir, Transfinite tree quivers and their representations, arXiv:1201.2294v1 [math.RA], (2012).

5.
E. Enochs, J. R. Garcia Rozas, L. Oyonarte, and S. Park, Noetherian quivers, Quaest. Math. 25 (2002), no. 4, 531-538. crossref(new window)

6.
E. Enochs and O. Jenda, Relative Homological Algebra, Gordon and Breach S. Publishers, 2000.

7.
E. Enochs, O. Jenda, and J. A. Lopez-Ramos, Dualizing modules and n-perfect rings, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 75-90. crossref(new window)

8.
E. Enochs, L. Oyonarte, and B. Torrecillas, Flat covers and flat representations of quivers, Comm. Algebra 32 (2004), no. 4, 1319-1338. crossref(new window)

9.
I. Herzog, Pure-injective envelope, J. Algebra Appl. 2 (2003), no. 4, 397-402. crossref(new window)

10.
C. U. Jensen and H. Lenzing, Model Theoretic Algebra, Gordon and Breach S. Publishers, 1989.

11.
L. Oyonarte, Cotorsion representations of quivers, Comm. Algebra 29 (2001), no. 12, 5563-5574. crossref(new window)

12.
J. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, Springer-Verlag, 1634, 1996.

13.
R.Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.