JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS
Kim, Eui Chul;
  PDF(new window)
 Abstract
Let (, ) be a 3-dimensional closed Sasakian spin manifold. Let denote the minimum of the scalar curvature of (, ). Let > 0 be the first positive eigenvalue of the Dirac operator of (, ). We proved in [13] that if belongs to the interval , then satisfies . In this paper, we remove the restriction "if belongs to the interval " and prove .
 Keywords
Dirac operator;eigenvalues;Sasakian manifolds;
 Language
English
 Cited by
1.
Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds, Annals of Global Analysis and Geometry, 2014, 45, 1, 67  crossref(new windwow)
 References
1.
I. Agricola, The Srni lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5-84.

2.
M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69. crossref(new window)

3.
F. A. Belgun, Normal CR structure on compact 3-manifolds, Math. Z. 238 (2001), no. 3, 441-460. crossref(new window)

4.
D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston/Basel/Berlin, 2002.

5.
Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980), 117-146. crossref(new window)

6.
Th. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, AMS, Providence, RI, 2000.

7.
Th. Friedrich, The second Dirac eigenvalue of a nearly parallel $G_{2}$-manifold, Adv. Appl. Clifford Algebr. 22 (2012), no. 2, 301-311. crossref(new window)

8.
Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1-2, 128-172. crossref(new window)

9.
N. Ginoux, The Dirac Spectrum, Lecture Notes in Mathematics, Springer-Verlag, Berlin/Heidelberg, 2009.

10.
O. Hijazi, Eigenvalues of the Dirac operator on compact Kahler manifolds, Comm. Math. Phys. 160 (1994), no. 3, 563-579. crossref(new window)

11.
E. C. Kim, The A-genus and symmetry of the Dirac spectrum on Riemannian product manifolds, Differential Geom. Appl. 25 (2007), no. 3, 309-321. crossref(new window)

12.
E. C. Kim, Dirac eigenvalues estimates in terms of divergencefree symmetric tensors, Bull. Korean Math. Soc. 46 (2009), no. 5, 949-966. crossref(new window)

13.
E. C. Kim, Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds, Differential Geom. Appl. 28 (2010), no. 6, 648-655. crossref(new window)

14.
S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45. crossref(new window)

15.
A. Moroianu, Operateur de Dirac et submersions riemanniennes, Thesis, Ecole Polytechnique, 1996.