JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MATLIS INJECTIVE MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MATLIS INJECTIVE MODULES
Yan, Hangyu;
  PDF(new window)
 Abstract
In this paper, Matlis injective modules are introduced and studied. It is shown that every R-module has a (special) Matlis injective preenvelope over any ring R and every right R-module has a Matlis injective envelope when R is a right Noetherian ring. Moreover, it is shown that every right R-module has an -envelope when R is a right Noetherian ring and is a class of injective right R-modules.
 Keywords
Matlis injective module;(pre)envelope;-pure injective;
 Language
English
 Cited by
1.
Relative Projective and Injective Dimensions, Communications in Algebra, 2016, 44, 8, 3383  crossref(new windwow)
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math. 13, Springer-Verlag, New York 1974.

2.
S. Bazzoni, When are definable classes tilting and cotilting classes?, J. Algebra 320 (2008), no. 12, 4281-4299. crossref(new window)

3.
H. Cartan and S. Eilenberg, Homological Algebra, Princeton Math. Ser., 1956.

4.
P. C. Eklof and S. Shelah, On Whitehead modules, J. Algebra 142 (1991), no. 2, 492-510. crossref(new window)

5.
P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. Lond. Math. Soc. 23 (2001), no. 1, 41-51.

6.
E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. crossref(new window)

7.
E. E. Enochs and O. M. G. Jenda, Copure injective modules, Quaest. Math. 14 (1991), no. 4, 401-409. crossref(new window)

8.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Expos. Math. 30, de Gruyter, Berlin 2000.

9.
A. Facchini, Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress in Math. vol. 167, Birkhauser, Basel, 1998.

10.
R. Gobel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, de Gruyter Expos. Math. 41, de Gruyter, Berlin 2006.

11.
P. A. Guil Asensio and I. Herzog, Sigma-cotorsion rings, Adv. Math. 191 (2005), no. 1, 11-28. crossref(new window)

12.
T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math. 189, Springer, New York 1999.

13.
J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math. 85, Academic Press, New York 1979.