SOLVABILITY AND BOUNDEDNESS FOR GENERAL VARIATIONAL INEQUALITY PROBLEMS

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 50, Issue 2, 2013, pp.589-599
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2013.50.2.589

Title & Authors

SOLVABILITY AND BOUNDEDNESS FOR GENERAL VARIATIONAL INEQUALITY PROBLEMS

Luo, Gui-Mei;

Luo, Gui-Mei;

Abstract

In this paper, we propose a sufficient condition for the existence of solutions to general variational inequality problems (GVI(K, F, )). The condition is also necessary when F is a function. We also investigate the boundedness of the solution set of (GVI(K, F, )). Furthermore, we show that when F is norm-coercive, the general complementarity problems (GCP(K, F, )) has a nonempty compact solution set. Finally, we establish some existence theorems for (GNCP(K, F, )).

Keywords

general variational inequality problem;general complementarity problem;existence;boundedness;strict feasibility;quasi-g- function;

Language

English

References

1.

G. Y. Chen, C. J. Goh, and X. Q. Yang, On gap functions and duality of variational inequality problems, J. Math. Anal. Appl. 214 (1997), no. 2, 658-673.

2.

F. Facchinei, A. Fischer, and V. Piccialli, On generalized Nash games and variational inequalities, Oper. Res. Lett 35 (2007), no. 2, 159-164.

3.

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I and II, Springer-Verlag, New York, 2003.

4.

M. Fakhar and J. Zafarani, On generalized variational inequalities, J. Global Optim. 43 (2009), no. 4, 503-511.

5.

J. Han, Z. H. Huang, and S. C. Fang, Solvability of variational inequality problems, J. Optim. Theory Appl. 122 (2004), no. 3, 501-520.

6.

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Programming 48 (1990), no. 2, (Ser. B), 161-220.

7.

B. S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim. 35 (1997), no. 1, 69-76.

8.

B. S. He and L. Z. Liao, Improvement of some projection methods for monotone nonlinear variational inequalities, J. Optim. Theory Appl. 112 (2002), no. 1, 111-128.

9.

Z. H. Huang, Sufficient conditions on nonemptiness and boundedness of the solution set of the $P_{0}$ function nonlinear complementarity problem, Oper. Res. Lett. 30 (2002), no. 3, 202-210.

10.

Z. H. Huang, Generalization of an existence theorem for variational inequalities, J. Optim. Theory Appl. 118 (2003), no. 3, 567-585.

11.

Z. Liu and Y. He, Exceptional family of elements for generalized variational inequalities, J. Global Optim. 48 (2010), no. 3, 465-471.

12.

D. T. Luc, The Frechet approximate Jacobian and local uniqueness in variational in-equalities, J. Math. Anal. Appl. 268 (2002), no. 2, 629-646.

13.

D. T. Luc and M. A. Noor, Local uniqueness of solutions of general variational inequalities, J. Optim. Theory Appl. 117 (2003), no. 1, 103-119.

15.

M. A. Noor, Wiener-Hopf equations and variational inequalities, J. Optim. Theory Appl. 79 (1993), no. 1, 197-206.

16.

M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), no. 1, 199-277.

17.

18.

M. A. Noor, Some aspects of extended general variational inequalities, Abstract and Applied Analysis 2012 (2012), Article ID: 303569, 16 pages.

19.

J. S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Comput. Manag. Sci. 2 (2005), no. 1, 21-56.

20.

J. S. Pang and J. C. Yao, On a generalization of a normal map and equation, SIAM J. Control Optim. 33 (1995), no. 1, 168-184.

21.

N. H. Xiu, Tangent projection equations and general variational inequalities, J. Math. Anal. Appl. 258 (2001), no. 2, 755-762.

22.

J. C. Yao, A basic theorem of complementarity for the generalized variational-like in-equality problem, J. Math. Anal. Appl. 158 (1991), no. 1, 124-138.

23.

24.

L. Yu and M. Liang, Convergence theorems of solutions of a generalized variational inequality, Fixed Point Theory Appl. 2011 (2011), no. 19, 10 pp.