JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES
Irani, Yavar; Bahmanpour, Kamal;
  PDF(new window)
 Abstract
Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules (T,N) are finitely generated for all integers . This immediately implies that if I has dimension one (i.e., dim R/I = 1), then ((M), N) is finitely generated for all integers , , and all finitely generated R-modules M and N, with Supp(N) V(I).
 Keywords
arithmetic rank;cofinite modules;local cohomology;minimax modules;
 Language
English
 Cited by
1.
Artinian cofinite modules over complete Noetherian local rings, Czechoslovak Mathematical Journal, 2013, 63, 4, 877  crossref(new windwow)
 References
1.
R. Abazari and K. Bahmanpour, Cofiniteness of extension functors of cofinite modules, J. Algebra 330 (2011), 507-516. crossref(new window)

2.
K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (2009), no. 7, 1997-2011. crossref(new window)

3.
K. Bahmanpour, R. Naghipour, and M. Sedghi, Minimaxness and cofiniteness properties of local cohomology modules, Comm. Algebra, In press.

4.
K. Bahmanpour, R. Naghipour, and M. Sedghi, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc., In press.

5.
M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.

6.
G. Chiriacescu, Cofiniteness of local cohomology modules, Bull. London Math. Soc. 32 (2000), no. 1, 1-7. crossref(new window)

7.
D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79-84. crossref(new window)

8.
D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45-52. crossref(new window)

9.
A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 862, Springer, New York, 1966.

10.
R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164. crossref(new window)

11.
C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421-429. crossref(new window)

12.
K. I. Kawasaki, On the finiteness of Bass numbers of local cohomology modules, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3275-3279. crossref(new window)

13.
H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, UK, 1986.

14.
L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668. crossref(new window)

15.
K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147(1997), 179-191.

16.
H. Zoschinger, Minimax modules, J. Algebra 102 (1986), no. 1, 1-32. crossref(new window)