JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS
He, Yuan; Zhang, Wenpeng;
  PDF(new window)
 Abstract
In this note, the -extension of the twisted Lerch Euler zeta functions considered by Jang [Bull. Korean Math. Soc. 47 (2010), no. 6, 1181-1188] is further investigated, and the generalized multiplication theorem for the -extension of the twisted Lerch Euler zeta functions is given. As applications, some well-known results in the references are deduced as special cases.
 Keywords
q-Euler number and polynomials;q-Euler zeta functions;Lerch type q-Euler zeta functions;q-analogue;
 Language
English
 Cited by
1.
Symmetric identities for Carlitz’s q-Bernoulli numbers and polynomials, Advances in Difference Equations, 2013, 2013, 1, 246  crossref(new windwow)
 References
1.
Y. He and Q. Y. Liao, Some congruences invloving Euler numbers, Fibonacci Quart. 46/47 (2008/2009), 225-234.

2.
Y. He and W. P. Zhang, Some symmetric identities involving a sequence of polynomials, Electron. J. Combin. 17 (2010), no. 1, Note 7, 7 pp.

3.
Y. He and W. P. Zhang, Some sum relations involving Bernoulli and Euler polynomials, Integral Transforms Spec. Funct. 22 (2011), no. 3, 207-215. crossref(new window)

4.
L. Jang, On a q-analogue of the p-adic generalized twisted L-functions and p-adic q-integrals, J. Korean Math. Soc. 44 (2007), no. 1, 1-10. crossref(new window)

5.
L. Jang, The q-analogue of twisted Lerch type Euler zeta functions, Bull. Korean Math. Soc. 47 (2010), no. 6, 1181-1188. crossref(new window)

6.
T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.

7.
T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (2006), no. 3, 293-298. crossref(new window)

8.
T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on $\mathbb{Z}_ {p}$ at q =-1, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792. crossref(new window)

9.
T. Kim, Symmetry p-adic invariant integral on ${\mathbb{Z}}_{p}$ for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277. crossref(new window)

10.
T. Kim, p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), no. 1, 598-608. crossref(new window)

11.
T. Kim, Note on the Euler q-zeta functions, J. Number Theory 129 (2009), no. 7, 1798-1804. crossref(new window)

12.
T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling umbers by the fermionic p-adic integral on ${\mathbb{Z}}_{p}$, Russ. J. Math. Phys. 16 (2009), no. 4, 484-491. crossref(new window)

13.
T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329. crossref(new window)

14.
H. M. Liu and W. P. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math. 309 (2009), no. 10, 3346-3363. crossref(new window)

15.
D. Q. Lu and H. M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl. 62 (2011), no. 9, 3591-3602. crossref(new window)

16.
H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008), no. 9, 934-939. crossref(new window)

17.
S. H. Rim and T. Kim, A note on p-adic Euler measure on ${\mathbb{Z}}_{p}$, Russ. J. Math. Phys. 13 (2006), no. 3, 358-361. crossref(new window)

18.
Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (2007), no. 1, 466-473. crossref(new window)

19.
Y. Simsek, V. Kurt, and D. Kim, New approach to the complete sum of products of the twisted (h; q)-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 14 (2007), no. 1, 44-56. crossref(new window)