JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REDUCING SUBSPACES FOR TOEPLITZ OPERATORS ON THE POLYDISK
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REDUCING SUBSPACES FOR TOEPLITZ OPERATORS ON THE POLYDISK
Shi, Yanyue; Lu, Yufeng;
  PDF(new window)
 Abstract
In this note, we completely characterize the reducing subspaces of on where > -1 and N, M are positive integers with , and show that the minimal reducing subspaces of on the unweighted Bergman space and on the weighted Bergman space are different.
 Keywords
Toeplitz operator;reducing subspace;Bergman space;
 Language
English
 Cited by
1.
REDUCING SUBSPACES OF WEIGHTED SHIFTS WITH OPERATOR WEIGHTS,;

대한수학회보, 2016. vol.53. 5, pp.1471-1481 crossref(new window)
2.
REDUCING SUBSPACES FOR A CLASS OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE OF THE BIDISK,;;;

대한수학회보, 2015. vol.52. 5, pp.1649-1660 crossref(new window)
1.
Reducing subspaces of tensor products of weighted shifts, Science China Mathematics, 2016, 59, 4, 715  crossref(new windwow)
2.
A Note on Reducing Subspaces of Toeplitz Operator on the Weighted Analytic Function Spaces of the Bidisk Hw2D2, Journal of Function Spaces, 2017, 2017, 1  crossref(new windwow)
3.
REDUCING SUBSPACES FOR A CLASS OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE OF THE BIDISK, Bulletin of the Korean Mathematical Society, 2015, 52, 5, 1649  crossref(new windwow)
4.
Multiplication Operators Defined by a Class of Polynomials on $${L_a^2(\mathbb{D}^2)}$$ L a 2 ( D 2 ), Integral Equations and Operator Theory, 2014, 80, 4, 581  crossref(new windwow)
5.
Reducing Subspaces of Some Multiplication Operators on the Bergman Space over Polydisk, Abstract and Applied Analysis, 2015, 2015, 1  crossref(new windwow)
6.
Reducing subspaces for a class of non-analytic Toeplitz operators on the bidisk, Journal of Mathematical Analysis and Applications, 2017, 445, 1, 784  crossref(new windwow)
7.
Reducing subspaces of multiplication operators with the symbol αz k + βw l on $$L_a^2 (\mathbb{D}^2 )$$, Science China Mathematics, 2015, 58, 10, 1  crossref(new windwow)
 References
1.
K. Guo and H. Huang, On Multiplication operators on the Bergman space: similarity, unitary equivalence and reducing subspaces, J. Operator Theory 65 (2011), no. 2, 355-378.

2.
K. Guo, S. Sun, D. Zheng, and C. Zhong, Multiplication operators on the Bergman space via the Hardy space of the bidisk, J. Reine Angew. Math. 628 (2009), 129-168.

3.
Y. Lu and Y. Shi, Hyponormal Toeplitz operators on the weighted Bergman space, Integral Equations Operator Theory 65 (2009), no. 1, 115-129. crossref(new window)

4.
Y. Lu and X. Zhou, Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk, J. Math. Soc. Japan 62 (2010), no. 3, 745-765. crossref(new window)

5.
S. Shimorin, On Beurling-type theorems in weighted $l^{2}$ and Bergman spaces, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1777-1787. crossref(new window)

6.
L. Trieu, On Toeplitz operators on Bergman spaces of the unit polydisk, Proc. Amer. Math. Soc. 138 (2010), no. 1, 275-285. crossref(new window)

7.
X. Zhou, Y. Shi, and Y. Lu, Invariant subspaces and reducing subspaces of weighted Bergman space over polydisc, Sci. Sin. Math. 41 (2011), no. 5, 427-438. crossref(new window)

8.
K. Zhu, Reducing subspaces for a class of multiplication operators, J. London Math. Soc. 62 (2000), no. 2, 553-568. crossref(new window)

9.
K. Zhu, Operator Theory in Function Spaces, 2nd ed. Providence, R.I.: American Mathematical Society, 2007.