JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS
Jin, Dae Ho;
  PDF(new window)
 Abstract
In this paper, we study the curvature of a semi-Riemannian manifold of quasi-constant curvature admits some half lightlike submanifolds M. The main result is two characterization theorems for admits extended screen homothetic and statical half lightlike submanifolds M such that the curvature vector field of is tangent to M.
 Keywords
extended screen homothetic;statical;half lightlike submanifold;semi-Riemannian manifold of quasi-constant curvature;
 Language
English
 Cited by
1.
TRANSVERSAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE,;

East Asian mathematical journal, 2016. vol.32. 1, pp.1-11 crossref(new window)
2.
STATICAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE,;

대한수학회논문집, 2016. vol.31. 2, pp.365-377 crossref(new window)
1.
TRANSVERSAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE, East Asian mathematical journal, 2016, 32, 1, 1  crossref(new windwow)
2.
STATICAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE, Communications of the Korean Mathematical Society, 2016, 31, 2, 365  crossref(new windwow)
 References
1.
B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N. S.) 26 (1972), 318-322.

2.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

3.
K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121-161.

4.
K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

5.
K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Frontiers in Mathematics, Birkhauser, 2010.

6.
D. H. Jin, Einstein half lightlike submanifolds with a Killing co-screen distribution, Honam Math. J. 30 (2008), no. 3, 487-504. crossref(new window)

7.
D. H. Jin, Half lightlike submanifolds with totally umbilical screen distributions, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 17 (2010), no. 1, 29-38.

8.
D. H. Jin, Lightlike hypersurfaces of a semi-Riemannian manifold of quasi-constant curvature, Commun. Korean Math. Soc. 27 (2012), no. 4, 763-770. crossref(new window)

9.
D. H. Jin and J.W. Lee, Lightlike submanifolds of a semi-Riemannian manifold of quasi- constant curvature, Journal of Applied Mathematics Volume 2012, Article ID 636782, 18 pages, doi:10.1155/2012/636782. crossref(new window)

10.
D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.