JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY QUADRATIC FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY QUADRATIC FUNCTION FIELDS
Jung, Hwanyup;
  PDF(new window)
 Abstract
In this paper we study the infiniteness of Hilbert 2-class field towers of imaginary quadratic function fields over , where is a power of an odd prime number.
 Keywords
Hilbert 2-class field tower;imaginary quadratic function field;
 Language
English
 Cited by
 References
1.
S. Bae, S. Hu, and H. Jung, The generalized Redei matrix for function fields, Finite Fields Appl. 18 (2012), no. 4, 760-780. crossref(new window)

2.
F. Gerth, Quadratic fields with infinite Hilbert 2-class field towers, Acta. Arith. 106 (2003), no. 2, 151-158. crossref(new window)

3.
F. Hajir, On a theorem of Koch, Pacific J. Math. 176 (1996), no. 1, 15-18. crossref(new window)

4.
F. Hajir, Correction to "On a theorem of Koch", Pacific J. Math. 196 (2000), no. 2, 507-508.

5.
H. Koch, Uber den 2-Klassenkorperturm eines quadratischen Zahlkorpers, J. Reine Angew. Math. 214/215 (1964), 201-206.

6.
J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44 (1978), no. 1, 65-73. crossref(new window)

7.
M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365-378.

8.
M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.

9.
R. Schoof, Algebraic curves over ${\mathbb{F}}_2$ with many rational points, J. Number Theory 41 (1992), no. 1, 6-14. crossref(new window)

10.
C. Wittmann, Densities for 4-ranks of quadratic function fields, J. Number Theory 129 (2009), no. 10, 2635-2645. crossref(new window)