JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
Jin, Dae Ho; Lee, Jae Won;
  PDF(new window)
 Abstract
In this paper, we study the geometry of half lightlike submanifolds M of a semi-Riemannian manifold with a semi-symmetric non-metric connection subject to the conditions; (1) the characteristic vector field of is tangent to M, the screen distribution on M is totally umbilical in M and the co-screen distribution on M is conformal Killing, or (2) the screen distribution is integrable and the local lightlike second fundamental form of M is parallel.
 Keywords
half lightlike submanifold;semi-Riemannian manifold with semi-symmetric non-metric connection;totally umbilical screen distribution;
 Language
English
 Cited by
1.
TWO CHARACTERIZATION THEOREMS FOR IRROTATIONAL LIGHTLIKE GEOMETRY,;

대한수학회논문집, 2013. vol.28. 4, pp.809-818 crossref(new window)
2.
HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION,;

한국수학교육학회지시리즈B:순수및응용수학, 2014. vol.21. 1, pp.39-50 crossref(new window)
3.
NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS WITH SEMI-SYMMETRIC NON-METRIC CONNECTIONS,;

대한수학회지, 2014. vol.51. 2, pp.311-323 crossref(new window)
4.
SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM,;

East Asian mathematical journal, 2014. vol.30. 3, pp.371-383 crossref(new window)
5.
NON-EXISTENCE OF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS ADMITTING NON-METRIC π-CONNECTIONS,;

대한수학회논문집, 2014. vol.29. 4, pp.539-547 crossref(new window)
6.
LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD WITH A NON-METRIC θ-CONNECTION,;

한국수학교육학회지시리즈B:순수및응용수학, 2014. vol.21. 4, pp.229-236 crossref(new window)
7.
NON-EXISTENCE OF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE TRANS-SASAKIAN MANIFOLDS WITH NON-METRIC 𝜃-CONNECTIONS,;

대한수학회논문집, 2015. vol.30. 1, pp.35-43 crossref(new window)
8.
LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION,;

East Asian mathematical journal, 2015. vol.31. 1, pp.33-40 crossref(new window)
9.
NON-EXISTENCE FOR SCREEN QUASI-CONFORMAL IRROTATIONAL HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM ADMITTING A SEMI-SYMMETRIC NON-METRIC CONNECTION,;

East Asian mathematical journal, 2015. vol.31. 3, pp.337-344 crossref(new window)
1.
LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD WITH A NON-METRIC θ-CONNECTION, The Pure and Applied Mathematics, 2014, 21, 4, 229  crossref(new windwow)
2.
HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION, The Pure and Applied Mathematics, 2014, 21, 1, 39  crossref(new windwow)
3.
NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS WITH SEMI-SYMMETRIC NON-METRIC CONNECTIONS, Journal of the Korean Mathematical Society, 2014, 51, 2, 311  crossref(new windwow)
4.
NON-EXISTENCE OF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS ADMITTING NON-METRIC π-CONNECTIONS, Communications of the Korean Mathematical Society, 2014, 29, 4, 539  crossref(new windwow)
5.
LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION, East Asian mathematical journal, 2015, 31, 1, 33  crossref(new windwow)
6.
Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection, Journal of Inequalities and Applications, 2013, 2013, 1, 403  crossref(new windwow)
7.
NON-EXISTENCE FOR SCREEN QUASI-CONFORMAL IRROTATIONAL HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM ADMITTING A SEMI-SYMMETRIC NON-METRIC CONNECTION, East Asian mathematical journal, 2015, 31, 3, 337  crossref(new windwow)
8.
SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM, East Asian mathematical journal, 2014, 30, 3, 371  crossref(new windwow)
9.
NON-EXISTENCE OF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE TRANS-SASAKIAN MANIFOLDS WITH NON-METRIC 𝜃-CONNECTIONS, Communications of the Korean Mathematical Society, 2015, 30, 1, 35  crossref(new windwow)
 References
1.
N. S. Agashe and M. R. Chafle, A semi-symmetric nonmetric connection on a Rie- mannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399-409.

2.
N. S. Agashe and M. R. Chafle, On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Tensor (N.S.) 55 (1994), no. 2, 120-130.

3.
A. Connes and M. Rieffel, Yang-Mills for noncommutative two-tori, Contemp. Math. 62 (1987), 237-266. crossref(new window)

4.
G. de Rham, Sur la reductibilite dun espace de Riemannian, Comment. Math. Helv. 26 (1952), 328-344. crossref(new window)

5.
K. L. Duggal and A. Bejancu, Lightlike submanifolds of codimension two, Math. J. Toyama Univ. 15 (1992), 59-82.

6.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

7.
K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121-161.

8.
K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

9.
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973.

10.
D. H. Jin, Geometry of lightlike hypersurfaces of a semi-Riemannian space form with a semi-symmetric non-metric connection, Submitted in J. of Geo. and Phy.

11.
D. H. Jin, Einstein half lightlike submanifolds with special conformalities, Accepted in Bull. Korean Math. Soc. 2012. crossref(new window)

12.
D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Acad. Publishers, Dordrecht, 1996.

13.
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

14.
E. Yasar, A. C. Coken, and A. Yucesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102 (2008), no. 2, 253-264.