SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 50, Issue 3, 2013, pp.731-745
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2013.50.3.731

Title & Authors

SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS

Qi, Xiao-Guang; Yang, Lian-Zhong;

Qi, Xiao-Guang; Yang, Lian-Zhong;

Abstract

In this paper, we investigate uniqueness problems of certain types of -difference polynomials, which improve some results in [20]. However, our proof is different from that in [20]. Moreover, we obtain a uniqueness result in the case where -differences of two entire functions share values as well. This research also shows that there exist two sets, such that for a zero-order non-constant meromorphic function and a non-zero complex constant , for imply , where . This gives a partial answer to a question of Gross concerning a zero order meromorphic function and .

Keywords

meromorphic functions;Q-difference;sharing value;

Language

English

References

1.

D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 457-474.

2.

G. Frank and M. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Var. Theory Appl. 37 (1998), no. 1-4, 185-193.

3.

F. Gross, Factorization of meromorphic functions and some open problems, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), pp. 51-67. Lecture Notes in Math., Vol. 599, Springer, Berlin, 1977.

4.

F. Gross and C. F. Osgood, Entire functions with common preimages, in: Factorization theory of meromorphic functions and related topics, pp. 19-24, Lecture Notes in Pure and Appl. Math., 78, Dekker, New York,

5.

X. H. Hua, A unicity theorem for entire functions, Bull. London Math. Soc. 22 (1990), no. 5, 457-462.

6.

I. Laine and C. C. Yang, Clunie theorem for difference and q-difference polynomials, J. London. Math. Soc. (2) 76 (2007), no. 3, 556-566.

7.

R. Nevanlinna, Le theoreme de Picard-Borel et la theorie des fonctions meromorphes, Gauthiers-Villars, Paris, 1929.

8.

X. G. Qi, K. Liu, and L. Z. Yang, Value sharing results of a meromorphic function f(z) and f(qz), Bull. Korean. Math. Soc. 48 (2011), no. 6, 1235-1243.

9.

X. G. Qi and L. Z. Yang, Share sets of q-difference of meromorphic functions, to appear in Math. Slovaca.

10.

K. Shibazaki, Unicity theorem for entire functions of finite order, Mem. Nat. Defense Acad. (Japan) 21 (1981), no. 3, 67-71.

11.

C. C. Yang, On two entire functions which together with their first derivative have the same zeros, J. Math. Anal. Appl. 56 (1976), no. 1, 1-6.

12.

C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, 2003.

13.

L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76 (2008), no. 1-2, 140-150.

14.

H. X. Yi, A question of Gross and the uniqueness of entire functions, Nagoya Math. J. 138 (1995), 169-177.

15.

H. X. Yi, Unicity theorems for meromorphic or entire functions II, Bull. Austral. Math. Soc. 52 (1995), no. 2, 215-224.

16.

H. X. Yi, Unicity theorems for meromorphic or entire functions III, Bull. Austral. Math. Soc. 53 (1996), no. 1, 71-82.

17.

H. X. Yi, Meromorphic functions that share one or two values II, Kodai Math. J. 22, (1999), no. 2, 264-272.

18.

H. X. Yi and L. Z. Yang, Meromorphic functions that share two sets, Kodai Math. J. 20 (1997), no. 2, 127-134.

19.

X. B. Zhang, Uniqueness of meromorphic functions sharing a small function and some normality criteria, Doctoral Dissertation, Shandong University, 2011.