JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON DISCRETENESS OF MÖBIUS GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON DISCRETENESS OF MÖBIUS GROUPS
Fu, Xi;
  PDF(new window)
 Abstract
It`s known that one could use a fixed loxodromic or parabolic element in as a test map to test the discreteness of a non-elementary Mbius group G. In this paper, we discuss the discreteness of G by using a fixed elliptic element.
 Keywords
discreteness;elliptic elements;loxodromic elements;
 Language
English
 Cited by
 References
1.
A. F. Beardon, The Geometry of discrete groups, Graduate text in Mathematics, Vol. 91, Springer-Verlag, 1983.

2.
W. Cao and X. Wang, Discreteness criteria and algebraic convergence theorem for subgroups in PU(1, n;${\mathbb{C}}$), Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 3, 49-52. crossref(new window)

3.
S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 49-87. Academic Press, New York, 1974.

4.
T. Jorgensen, On discrete groups of Mobius transformation, Amer. J. Math. 98 (1976), no. 3, 739-749. crossref(new window)

5.
T. Jorgensen, A note on subgroups of SL(2,${\mathbb{C}}$), Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 110, 209-211. crossref(new window)

6.
L. Li, Elliptic elements in Mobius groups, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 3, 69-72. crossref(new window)

7.
L. Li and X. Fu, Discreteness by use of a test map, Bull. Korean. Math. Soc. 49 (2012), no. 1, 57-61. crossref(new window)

8.
P. Tukia and X. Wang, Discreteness of subgroups of SL(2, ${\mathbb{C}}$) containing elliptic elements, Math. Scand. 91 (2002), no. 2, 214-220.

9.
X. Wang, Dense subgroups of n-dimensional Mobius groups, Math. Z. 243 (2003), no. 4, 643-651. crossref(new window)

10.
X. Wang, L. Li, and W. Cao, Discreteness criteria for Mobius groups acting on M(${\overline{\mathbb{R}}}^n$), Israel J. Math. 150 (2005), 357-368. crossref(new window)

11.
X. Wang and W. Yang, Discreteness criterions for subgroups in SL(2,C), Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 1, 51-55. crossref(new window)

12.
X. Wang and W. Yang, Discreteness criteria of Mobius groups of high dimensions and convergence theorems of Kleinian groups, Adv. Math. 159 (2001), no. 1, 68-82. crossref(new window)

13.
P. Waterman, Mobius transformations in several dimensions, Adv. Math. 101 (1993), no. 1, 87-113. crossref(new window)