JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PROPER EFFICIENCY FOR SET-VALUED OPTIMIZATION PROBLEMS AND VECTOR VARIATIONAL-LIKE INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PROPER EFFICIENCY FOR SET-VALUED OPTIMIZATION PROBLEMS AND VECTOR VARIATIONAL-LIKE INEQUALITIES
Long, Xian Jun; Quan, Jing; Wen, Dao-Jun;
  PDF(new window)
 Abstract
The purpose of this paper is to establish some relationships between proper efficiency of set-valued optimization problems and proper efficiency of vector variational-like inequalities under the assumptions of generalized cone-preinvexity. Our results extend and improve the corresponding results in the literature.
 Keywords
set-valued optimization problem;vector variational-like inequality;proper efficiency;contingent epiderivative;generalized cone-preinvexity;
 Language
English
 Cited by
1.
Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings, Fixed Point Theory and Applications, 2014, 2014, 1, 232  crossref(new windwow)
2.
On vector variational-like inequalities and vector optimization problems with (G, α)-invexity, Applied Mathematics-A Journal of Chinese Universities, 2017, 32, 3, 323  crossref(new windwow)
3.
Exponential type vector variational-like inequalities and nonsmooth vector optimization problems, Journal of Applied Mathematics and Computing, 2015, 49, 1-2, 127  crossref(new windwow)
 References
1.
A. Al-Homidan and Q. H. Ansari, Generalized Minty vector variational-like inequalities and vector optimization problems, J. Optim. Theory Appl. 144 (2010), no. 1, 1-11. crossref(new window)

2.
Q. H. Ansari and G. M. Lee, Nonsmooth vector optimization problems and Minty vector variational inequalities, J. Optim. Theory Appl. 145 (2000), no. 1, 1-16.

3.
Q. H. Ansari, M. Rezaie, and J. Zafarani, Generalized vector variational-like inequalities and vector optimization, J. Global Optim. 53 (2012), no. 2, 271-284. crossref(new window)

4.
Q. H. Ansari and J. C. Yao, On nondifferentiable and nonconvex vector optimization problems, J. Optim. Theory Appl. 106 (2000), no. 3, 475-488. crossref(new window)

5.
D. Bhatia and A. Mehra, Lagrangian duality for preinvex set-valued functions, J. Math. Anal. Appl. 214 (1997), no. 2, 599-612. crossref(new window)

6.
J. M. Borwein and D. Zhang, Super efficiency in vector optimization, Trans. Amer. Math. Soc. 338 (1993), no. 1, 105-122. crossref(new window)

7.
G. Bouligand, Sur l'existence des demi-tangentes a une courbe de Jordan, Fundamenta Math. 15 (1930), 215-215. crossref(new window)

8.
H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl. 58 (1988), no. 1, 1-10. crossref(new window)

9.
G. Y. Chen, X. X. Huang, and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis, Springer-Verlag, Berlin, Heidelberg, 2005.

10.
F. Giannessi, Theorem of alternative, quadratic programs, and complementarity problem, In: R. W. Cottle, F. Giannessi, J. L. Lions(Eds.), Variational Inequality and Complementarity Problem, pp. 151-186. John Wiley and Sons, Chichester, UK, 1980.

11.
F. Giannessi, Vector Variational Inequilities and Vector Equilibria: Mathematical Theories, Kluwer Academic, Dordrechet, 2000.

12.
F. Giannessi, On Minty variational principle, In: F. Giannessi, S. Komlosi, T. Tapcsack(eds.), New Trends in Mathematical Programming, pp. 93-99. Kluwer Academic, Dordrechet, 1998.

13.
X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior, J. Math. Anal. Appl. 307 (2005), no. 1, 12-31. crossref(new window)

14.
M. I. Henig, Proper efficiency with respect to cones, J. Optim. Theory Appl. 36 (1982), no. 3, 387-407. crossref(new window)

15.
J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Methods Oper. Res. 46 (1997), no. 2, 193-211. crossref(new window)

16.
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.

17.
G. M. Lee, D. S. Kim, B. S. Lee, and N. D. Yen, Vector variational inequalities as a tool for studying vector optimization problems, Nonlinear Anal. 34 (1998), no. 5, 745-765. crossref(new window)

18.
W. Liu and X. H. Gong, Proper efficiency for set-valued vector optimization problems and vector variational inequalities, Math. Methods Oper. Res. 51 (2000), no. 3, 443-457. crossref(new window)

19.
X. J. Long, J. W. Peng, and S. Y. Wu, Generalized vector variational-like inequalities and nonsmooth vector optimization problems, Optimization 61 (2012), 1075-1086. crossref(new window)

20.
S. K. Mishra and S. Y. Wang, Vector variational-like inequalities and non-smooth vector optimization problems, Nonlinear Anal. 64 (2006), no. 9, 1939-1945. crossref(new window)

21.
J. H. Qiu, Cone-directed contingent derivatives and generalized preinvex set-valued optimization, Acta Math. Sci. Ser. B Engl. Ed. 27 (2007), no. 1, 211-218.

22.
M. Rezaie and J. Zafarani, Vector optimization and variational-like inequalities, J. Global Optim. 43 (2009), no. 1, 47-66. crossref(new window)

23.
G. Ruiz-Garzon, R. Osuna-Gomez, and A. Rufian-Lizana, Relationships between vector variational-like inequality and optimization problems, European J. Oper. Res. 157 (2004), no. 1, 113-119. crossref(new window)

24.
X. M. Yang and X. Q. Yang, Vector variational-like inequality with pseudoinvexity, Optimization 55 (2006), no. 1-2, 157-170. crossref(new window)

25.
X. M. Yang, X. Q. Yang, and K. L. Teo, Some remarks on the Minty vector variational inequality, J. Optim. Theory Appl. 121 (2004), no. 1, 193-201. crossref(new window)

26.
J. Zeng and S. J. Li, On vector variational-like inequalities and set-valued optimization problems, Optim. Lett. 5 (2011), no. 1, 55-69. crossref(new window)