JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE
Yang, Jae-Hyun; Yong, Young-Hoon; Huh, Su-Na; Shin, Jung-Hee; Min, Gil-Hong;
  PDF(new window)
 Abstract
In this paper, we compute the sectional curvatures and the scalar curvature of the Siegel-Jacobi space of degree 1 and index 1 explicitly.
 Keywords
Siegel-Jacobi space;sectional curvatures;scalar curvature;
 Language
English
 Cited by
1.
COVARIANT MAPS FOR THE SCHRÖDINGER-WEIL REPRESENTATION,;

대한수학회보, 2015. vol.52. 2, pp.627-647 crossref(new window)
1.
COVARIANT MAPS FOR THE SCHRÖDINGER-WEIL REPRESENTATION, Bulletin of the Korean Mathematical Society, 2015, 52, 2, 627  crossref(new windwow)
2.
THETA SUMS OF HIGHER INDEX, Bulletin of the Korean Mathematical Society, 2016, 53, 6, 1893  crossref(new windwow)
3.
Coherent states and geometry on the Siegel–Jacobi disk, International Journal of Geometric Methods in Modern Physics, 2014, 11, 04, 1450035  crossref(new windwow)
4.
Gaussian distributions, Jacobi group, and Siegel-Jacobi space, Journal of Mathematical Physics, 2014, 55, 12, 122102  crossref(new windwow)
 References
1.
R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163, Birkhauser, Basel, 1998.

2.
W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 1975.

3.
M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser, Boston, Basel and Stuttgart, 1985.

4.
E. Kahler, Mathematische Werke/Mathematical Works, Edited by R. Berndt and O. Riemenschneider, Walter de Gruyter, Berlin-New York, 2003.

5.
J. Kramer, A geometrical approach to the theory of Jacobi forms, Compositio Math. 79 (1991), no. 1, 1-19.

6.
J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions, J. Reine Angew. Math. 458 (1995), 157-182.

7.
B. Runge, Theta functions and Siegel-Jacobi forms, Acta Math. 175 (1995), no. 2, 165-196. crossref(new window)

8.
M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Berkeley, Vol. II, 1979.

9.
J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146. crossref(new window)

10.
J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049. crossref(new window)

11.
J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. Math. 47 (1995), no. 6, 1329-1339. crossref(new window)

12.
J.-H. Yang, The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), no. 2, 199-272.

13.
J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.

14.
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory 127 (2007), no. 1, 83-102. crossref(new window)

15.
J.-H. Yang, A partial Cayley transform for Siegel-Jacobi disk, J. Korean Math. Soc. 45 (2008), no. 3, 781-794. crossref(new window)

16.
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Ann. Math. Ser. B 31 (2010), no. 1, 85-100. crossref(new window)

17.
J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, arXiv:1107.0509 v1 [math.NT] 4 July 2011.

18.
C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224. crossref(new window)