JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CONSTRUCTION OF COMMUTATIVE NILPOTENT SEMIGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CONSTRUCTION OF COMMUTATIVE NILPOTENT SEMIGROUPS
Liu, Qiong; Wu, Tongsuo; Ye, Meng;
  PDF(new window)
 Abstract
In this paper, we construct nilpotent semigroups S such that $S^n
 Keywords
nilpotent semigroup;refinement of a star graph;structure;counting formula;
 Language
English
 Cited by
 References
1.
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. crossref(new window)

2.
I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. crossref(new window)

3.
F. Buckley and M. Lewinter, A Friendly Introduction to Graph Theory, Prentice-Hall, 2003.

4.
F. R. DeMeyer and L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190-198. crossref(new window)

5.
L. DeMeyer, Y. J. Jiang, C. Loszewski, and E. Purdy, Classification of commutative zero-divisor semigroup graphs, Rocky Mountain J. Math. 40 (2010), no. 5, 1481-1503. crossref(new window)

6.
F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graphs of a commu- tative semigroup, Semigroup Forum 65 (2002), no. 2, 206-214.

7.
P. A. Grillet, Commutative Semigroups, Kluwer Academic Publishers, Dordrecht- Boston-London, 2001.

8.
N. Kehayopulu and A. Philip, An algorithm for Light's associativity test using Mathematica, J. Comput. Inform. 3 (1993), no. 1, 87-98.

9.
Q. Liu, Nilpotent semigroups whose zero-divisor graph is a refinement of a star graph, J. Shanghai University of Electric Power 26 (2010), 305-307.

10.
T. S. Wu and L. Chen, Simple graphs and commutative zero-divisor semigroups, Algebra Colloq. 16 (2009), no. 2, 211-218. crossref(new window)

11.
T. S. Wu and F. Cheng, The structures of zero-divisor semigroups with graph $K_n$ ${\circ}K_2$, Semigroup Forum 76 (2008), no. 2, 330-340.

12.
T. S. Wu and D. C. Lu, Sub-semigroups determined by the zero-divisor graph, Discrete Math. 308 (2008), no. 22, 5122-5135. crossref(new window)