JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSITIVE RADIAL SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS CONCENTRATING ON SPHERES WITH POTENTIAL DECAY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POSITIVE RADIAL SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS CONCENTRATING ON SPHERES WITH POTENTIAL DECAY
Carriao, Paulo Cesar; Lisboa, Narciso Horta; Miyagaki, Olimpio Hiroshi;
  PDF(new window)
 Abstract
We deal with the existence of positive radial solutions concentrating on spheres for the following class of elliptic system $$\large(S) \hfill{400} \{\array{-{\varepsilon}^2{\Delta}u+V_1(x)u
 Keywords
Schrdinger operator;radial solution;variational method;singular perturbation;
 Language
English
 Cited by
 References
1.
N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661-2664. crossref(new window)

2.
C. O. Alves, Local mountain pass for a class of elliptic system, J. Math. Anal. Appl. 335 (2007), no. 1, 135-150. crossref(new window)

3.
C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class gradient systems, Nonlinear Differential Equations Appl. 12 (2005), no. 4, 437-457.

4.
A. Ambrosetti, V. Felli, and A. Malchiodi, Ground states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. 7 (2005), no. 1, 117-144.

5.
A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on ${\mathbb{R}}^N$, Progr. Math., Birkhauser 240, Boston, 2006.

6.
A. Ambrosetti, A. Malchiodi, and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (2003), no. 3, 427-466. crossref(new window)

7.
A. Ambrosetti, A. Malchiodi, and D. Ruiz, Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Anal. Math. 98 (2006), 317-348. crossref(new window)

8.
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. crossref(new window)

9.
A. Ambrosetti and D. Ruiz, Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 5, 889-907. crossref(new window)

10.
A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrodinger equations with vanishing and decaying potentials, Differential Integral Equations 18 (2005), no. 12, 1321-1332.

11.
M. Badiale, V. Benci, and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc. 9 (2007), no. 3, 355-381.

12.
M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrodinger equation, Nonlinear Anal. 49 (2002), no. 7, Ser. A: Theory Methods, 947-985. crossref(new window)

13.
T. Bartsch and S. Peng, Semiclassical symmetric Schrodinger equations: Existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys. 58 (2007), no. 5, 778-804. crossref(new window)

14.
J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differential Equations 136 (1997), no. 1, 136-165. crossref(new window)

15.
J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrodinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185-200. crossref(new window)

16.
J. Byeon and Z.-Q. Wang, Spherical semiclassical states of a critical frequency for Schrodinger equations with decaying potentials, J. Eur. Math. Soc. 8 (2006), no. 2, 217-228.

17.
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295-316. crossref(new window)

18.
J. Byeon and Z.-Q. Wang, Standing waves for nonlinear Schrodinger equations with singular potentials, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 3, 943-958. crossref(new window)

19.
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations. II, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 207-219. crossref(new window)

20.
D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, Theory of incoherent self-focusing in biased photorefractive media, Phys. Rev. Lett. 78 (1997), 646-649. crossref(new window)

21.
R. Cipolatti and W. Zumpichiatti, On the existence and regularity of ground states for a nonlinear system of coupled Schrodinger equations in ${\mathbb{R}}^N$, Comput. Appl. Math. 18 (1999), no. 1, 15-29.

22.
R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrodinger equations, Nonlinear Anal. 42 (2000), no. 3, Ser. A: Theory Methods, 445-461. crossref(new window)

23.
E. N. Dancer and S. Yan, A new type of concentration solutions for a singularly perturbed elliptic problem, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1765-1790.

24.
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397-408. crossref(new window)

25.
B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597. crossref(new window)

26.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. 224, Springer-Verlag, Berlin Heidelberg, 1983.

27.
A. Hasegawa and Y. Kodama, Solitions in Optical Communications, Academic Press, San Diego, 1995.

28.
M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.

29.
I. P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. 17 (1981), 15-22. crossref(new window)

30.
E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409. crossref(new window)

31.
L. A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrodinger system, J. Differential Equations 229 (2006), no. 2, 743-767. crossref(new window)

32.
C. R. Menyuk, Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quantum Electron. 23 (1987), 174-176. crossref(new window)

33.
C. R. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quantum Electron. 25 (1989), 2674-2682. crossref(new window)

34.
P. Meystre, Atom Optics, Springer-Verlag, New York, 2001.

35.
D. L. Mills, Nonlinear Optics, Springer-Verlag, Berlin, 1998.

36.
D. C. de Morais Filho and M. A. S. Souto, Systems of p-laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1537-1553. crossref(new window)

37.
A. Pomponio, Coupled nonlinear Schrodinger systems with potentials, J. Differential Equations 227 (2006), no. 1, 258-281. crossref(new window)