JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THREE DIMENSIONAL CRITICAL POINT OF THE TOTAL SCALAR CURVATURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THREE DIMENSIONAL CRITICAL POINT OF THE TOTAL SCALAR CURVATURE
Hwang, Seungsu;
  PDF(new window)
 Abstract
It has been conjectured that, on a compact 3-dimensional orientable manifold, a critical point of the total scalar curvature restricted to the space of constant scalar curvature metrics of unit volume is Einstein. In this paper we prove this conjecture under a condition that ker , which generalizes the previous partial results.
 Keywords
total scalar curvature;critical point metric;Einstein metric;
 Language
English
 Cited by
1.
A note on critical point metrics of the total scalar curvature functional, Journal of Mathematical Analysis and Applications, 2015, 424, 2, 1544  crossref(new windwow)
 References
1.
A. L. Besse, Einstein Manifolds, New York, Springer-Verlag, 1987.

2.
J. Chang, G. Yun, and S. Hwang, Critical point metrics of the total scalar curvature, Bull. Korean Math. Soc. 49 (2012), no 3. 655-667. crossref(new window)

3.
A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. crossref(new window)

4.
S. Hwang, The critical point equation on a three dimensional compact manifold, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3221-3230. crossref(new window)

5.
S. Hwang, Some remarks on stable minimal surfaces in the critical point of the total scalar curvature, Comm. Korean Math. Soc. 23 (2008), no. 4, 587-595. crossref(new window)

6.
S. Hwang, J. Chang, and G. Yun, Rigidity of the critical point equation, Math. Nachr. 283 (2010), no. 6, 846-853. crossref(new window)

7.
M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), no. 3, 333-340. crossref(new window)