JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTE ON NULL HELICES IN
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTE ON NULL HELICES IN
Choi, Jin Ho; Kim, Young Ho;
  PDF(new window)
 Abstract
In this paper, we study null helices, null slant helices and Cartan slant helices in . Using some associated curves, we characterize the null helices and the Cartan slant helices and construct them. Also, we study a space-like curve with the principal normal vector field which is a degenerate plane curve.
 Keywords
Minkowski 3-space;null general helix;null slant helix;Cartan slant helix;associated curve;
 Language
English
 Cited by
1.
DIRECTIONAL ASSOCIATED CURVES OF A NULL CURVE IN MINKOWSKI 3-SPACE,;;

대한수학회보, 2015. vol.52. 1, pp.183-200 crossref(new window)
1.
Evolutes of plane curves and null curves in Minkowski 3-space, Journal of Geometry, 2017, 108, 1, 195  crossref(new windwow)
2.
DIRECTIONAL ASSOCIATED CURVES OF A NULL CURVE IN MINKOWSKI 3-SPACE, Bulletin of the Korean Mathematical Society, 2015, 52, 1, 183  crossref(new windwow)
3.
Null W-slant helices in E13, Journal of Mathematical Analysis and Applications, 2014, 420, 1, 222  crossref(new windwow)
 References
1.
A. T. Ali, Position vectors of spacelike general helices in Minkowski 3-space, Nonlinear Anal. 73 (2010), no. 4, 1118-1126. crossref(new window)

2.
A. T. Ali and R. Lopez, Timelike $B_2$-slant helices in Minkowski ${\mathbb{E}}^4_1$, Arch. Math. (Brno) 46 (2010), no. 1, 39-46.

3.
A. T. Ali and R. Lopez, Slant helices in Minkowski space ${\mathbb{E}}^3_1$, J. Korean Math. Soc. 48 (2011), no. 1, 159-167. crossref(new window)

4.
A. T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J. Math. Anal. Appl. 365 (2010), no. 2, 559-569. crossref(new window)

5.
A. T. Ali and M. Turgut, Determination of time-like general helices in Minkowski 3-space, Preprint 2009: arXiv:0906.3851v1 [math.DG].

6.
A. Bejancu, Lightlike curves in Lorentz manifolds, Publ. Math. Debrecen 44 (1994), no. 1-2, 145-155.

7.
J. H. Choi and Y. H. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput. 218 (2012), 9116-9124. crossref(new window)

8.
J. H. Choi, Y. H. Kim, and A. T. Ali, Some associated curves of a Frenet non-lightlike curve in ${\mathbb{E}}^3_1$, J. Math. Anal. Appl. 394 (2012), 1285-1296.

9.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer, Dordrecht, The Netherlands, 1996.

10.
K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

11.
A. Ferrandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Internat. J. Modern Phys. A 16 (2001), no. 30, 4845-4863. crossref(new window)

12.
A. Ferrandez, A. Gimenez, and P. Lucas, Null generalized helices in Lorentzian-Minkowski spaces, J. Phys. A: Math. Gen. 35 (2002), 8243-8251. crossref(new window)

13.
L. P. Hughston and W. T. Shaw, Real classical string, Proc. Roy. Soc. London Ser. A 414 (1987), no. 1847, 415-422. crossref(new window)

14.
L. P. Hughston and W. T. Shaw, Classical strings in ten dimensions, Proc. Roy. Soc. London Ser. A 414 (1987), no. 1847, 423-431. crossref(new window)

15.
L. P. Hughston and W. T. Shaw, Constraint-free analysis of relativistic strings, Classical Quantum Gravity 5 (1988), no. 3, 69-72. crossref(new window)

16.
L. P. Hughston and W. T. Shaw, Constraint-free analysis of relativistic strings, Class. Quant. Grav. 5 (1988), 69-72. crossref(new window)

17.
L. P. Hughston and W. T. Shaw, Twistors and strings, Amer. Math. Soc. RI 1988, 337-363.

18.
L. P. Hughston and W. T. Shaw, Spinor parametrizations of minimal surfaces, The mathematics of surfaces, III (Oxford, 1989), 359-372, Inst. Math. Appl. Conf. Ser. New Ser., 23, Oxford Univ. Press, New York, 1989.

19.
J. I. Inoguchi and S. W. Lee, Null curves in Minkowski 3-space, Int. Electron. J. Geom. 1 (2008), no. 2, 40-83.

20.
H. B. Karadag and M. Karadag, Null generalized slant helices in Lerontzian space, J. Phys. A: Math. Gen. 35 (2002), 8243-8251. crossref(new window)

21.
L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comp. 169 (2005), no. 1, 600-607. crossref(new window)

22.
B. O'Neill, Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983.