JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMI-SLANT SUBMERSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMI-SLANT SUBMERSIONS
Park, Kwang-Soon; Prasad, Rajendra;
  PDF(new window)
 Abstract
We introduce semi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds as a generalization of slant submersions, semi-invariant submersions, anti-invariant submersions, etc. We obtain characterizations, investigate the integrability of distributions and the geometry of foliations, etc. We also find a condition for such submersions to be harmonic. Moreover, we give lots of examples.
 Keywords
Riemannian submersion;slant angle;harmonic map;totally geodesic;
 Language
English
 Cited by
1.
H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS, Bulletin of the Korean Mathematical Society, 2016, 53, 2, 441  crossref(new windwow)
2.
Conformal semi-slant submersions, International Journal of Geometric Methods in Modern Physics, 2017, 14, 07, 1750114  crossref(new windwow)
3.
Semi-slant Riemannian map, Quaestiones Mathematicae, 2017, 1  crossref(new windwow)
4.
Hemi-Slant Submersions, Mediterranean Journal of Mathematics, 2016, 13, 4, 2171  crossref(new windwow)
5.
Conformal semi-invariant submersions, Communications in Contemporary Mathematics, 2017, 19, 02, 1650011  crossref(new windwow)
6.
On anti-invariant Riemannian submersions whose total manifolds are locally product Riemannian, Journal of Geometry, 2017, 108, 2, 411  crossref(new windwow)
7.
Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 2017, 1  crossref(new windwow)
8.
Almost h-semi-slant Riemannian maps to almost quaternionic Hermitian manifolds, Communications in Contemporary Mathematics, 2015, 17, 06, 1550008  crossref(new windwow)
 References
1.
A. Bejancu, Geometry of CR-submanifolds, Kluwer Academic, 1986.

2.
J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 143-163 (1990).

3.
J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. crossref(new window)

4.
P. Baird and J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford science publications, 2003.

5.
B. Y. Chen, Geometry of Slant Submaniflods, Katholieke Universiteit Leuven, Leuven, 1990.

6.
V. Cortes, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp.

7.
M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., 2004.

8.
A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech 16 (1967), 715-737.

9.
S. Ianus, A. M. Ionescu, R.Mazzocco, G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hamb. 81 (2011), no. 1, 101-114. crossref(new window)

10.
S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. crossref(new window)

11.
S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. crossref(new window)

12.
S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, 358-371, World Scientific, River Edge, 1991.

13.
M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. crossref(new window)

14.
B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 458-469.

15.
K. S. Park, H-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338. crossref(new window)

16.
K. S. Park, H-semi-invariant submersions, Taiwan. J. Math. 16 (2012), no. 5, 1865-1878.

17.
B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) (2011), no. 1, 93-105.

18.
B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (2013), no. 1, 173-183. crossref(new window)

19.
B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447. crossref(new window)

20.
B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), no. 1, 147-165.

21.
B. Watson, G,G'-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse, Teubner-Texte Math. 57 (1983), 324-349, Teubner, Leipzig.