JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTE FOR THE TRIPLED AND QUADRUPLE FIXED POINTS OF THE MIXED MONOTONE MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTE FOR THE TRIPLED AND QUADRUPLE FIXED POINTS OF THE MIXED MONOTONE MAPPINGS
Wu, Jun; Liu, Yicheng;
  PDF(new window)
 Abstract
In this paper, to include more generalized cases, the authors present a modified concept for the tripled and quadruple fixed point of the mixed monotone mappings. Also, they investigate the existence and uniqueness of fixed point of the ordered monotone operator with the Matkowski contractive conditions in the partial ordered metric spaces. As the direct consequences, the existence of coupled fixed point, tripled fixed point and quadruple fixed point are explored at the common framework and some previous results in [T. G. Bhaskar and V. Lakshmikan-tham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393; V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897; E. Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Computers and Mathematics with Applications (2012), doi:10.1016/j.camwa.2012.02061] are improved. Finally, some fixed point theorems are proved.
 Keywords
contractive mapping;quadruple fixed point;mixed monotone mapping;fixed point;
 Language
English
 Cited by
1.
Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces, Cogent Mathematics, 2016, 3, 1  crossref(new windwow)
 References
1.
A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. 72 (2010), no. 5, 2238-2242. crossref(new window)

2.
H. Aydi, M. Postolache, and W. Shatanawi, Coupled fixed point results for (${\psi},\;{\phi}$)-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl. 63 (2012), no. 1, 298-309. crossref(new window)

3.
V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897. crossref(new window)

4.
T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. crossref(new window)

5.
Y. Z. Chen, Existence theorems of coupled fixed points, J. Math. Anal. Appl. 154 (1991), no. 1, 142-150. crossref(new window)

6.
J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal. 74 (2011), no. 3, 768-774. crossref(new window)

7.
E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl. 59 (2010), no. 12, 3656-3668. crossref(new window)

8.
E. Karapinar, Quadruple fixed point theorems for weak ${\phi}$-contractions, ISRN Math. Anal. 2011 (2011), Article ID 989423, 16 pages.

9.
E. Karapinar, A new quartet fixed point theorem for nonlinear contractions, J. Fixed Point Theory Appl. 6 (2011), no. 2, 119-135.

10.
E. Karapinar and V. Berinde, Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces, Banach J. Math. Anal. 6 (2012), no. 1, 74-89. crossref(new window)

11.
E. Karapinar and V. Berinde, Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces, Banach J. Math. Anal. 6 (2012), no. 1, 74-89. crossref(new window)

12.
E. Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Computers and Mathematics with Applications 2010 (2012)

13.
E. Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Comput. Math. Appl. 64 (2012), no. 6, 1839-1848. crossref(new window)

14.
E. Karapinar, W. Shatanawi, and Z. Mustafa, Quadruple fixed point theorems under nonlinear contractive conditions in partially ordered metric spaces, Journal of Applied Mathematics 2012 (2012), Article ID 951912, 17 pages.

15.
V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. crossref(new window)

16.
Y. Liu and Z. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007), no. 1, 58-70. crossref(new window)

17.
J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127 (1975), 1-68.

18.
J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 62 (1977), no. 2, 344-348. crossref(new window)

19.
W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Comput. Math. Appl. 60 (2010), no. 8, 2508-2515. crossref(new window)

20.
W. Shatanawi and B. Samet, On (${\psi},\;{\phi}$)-weakly contractive condition in partially ordered metric spaces, Comput. Math. Appl. 62 (2011), no. 8, 3204-3214. crossref(new window)

21.
J. Z. Xiao, X. H. Zhu, and Y. F. Cao, Common coupled fixed point results for probabilistic ${\phi}$-contractions in Menger spaces, Nonlinear Anal. 74 (2011), no. 13, 4589-4600. crossref(new window)