JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SURFACES OF REVOLUTION SATISFYING ΔIIG
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SURFACES OF REVOLUTION SATISFYING ΔIIG
Baba-Hamed, Chahrazede; Bekkar, Mohammed;
  PDF(new window)
 Abstract
In this paper, we study surfaces of revolution without parabolic points in 3-Euclidean space , satisfying the condition ${\Delta}^{II}G
 Keywords
surfaces of revolution;Laplace operator;pointwise 1-type Gauss map;second fundamental form;
 Language
English
 Cited by
1.
Helicoidal surfaces satisfying $${\Delta ^{II}\mathbf{G}=f(\mathbf{G}+C)}$$ Δ II G = f ( G + C ), Journal of Geometry, 2016, 107, 3, 523  crossref(new windwow)
 References
1.
C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355-359. crossref(new window)

2.
C. Baikoussis, B.-Y. Chen, and L. Verstraelen, Ruled surfaces and tubes with finite type Gauss maps, Tokyo J. Math. 16 (1993), no. 2, 341-349. crossref(new window)

3.
B.-Y. Chen, On submanifolds of finite type, Soochow J. Math. 9 (1983), 17-33.

4.
B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Publ. New Jersey, 1984.

5.
B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.

6.
B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. crossref(new window)

7.
B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. crossref(new window)

8.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.

9.
M. Choi, D.-S. Kim, and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46 (2009), no. 1, 215-223. crossref(new window)

10.
Y. H. Kim, C. W. Lee, and D. W. Yoon, On the Gauss map of surfaces of revolution without parabolic points, Bull. Korean Math. Soc. 46 (2009), no. 6, 1141-1149. crossref(new window)

11.
Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), no. 1, 85-96.

12.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. crossref(new window)

13.
Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581. crossref(new window)

14.
A. Niang, Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc. 42 (2005), no. 1, 23-27. crossref(new window)

15.
A. Niang, On rotation surfaces in the Minkowski 3-dimensional space with pointwise 1- type Gauss map, J. Korean Math. Soc. 41 (2004), no. 6, 1007-1021. crossref(new window)

16.
B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.