JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME ALGEBRAIC AND TOPOLOGICAL PROPERTIES OF THE NONABELIAN TENSOR PRODUCT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME ALGEBRAIC AND TOPOLOGICAL PROPERTIES OF THE NONABELIAN TENSOR PRODUCT
Otera, Daniele Ettore; Russo, Francesco G.; Tanasi, Corrado;
  PDF(new window)
 Abstract
Several authors investigated the properties which are invariant under the passage from a group to its nonabelian tensor square. In the present note we study this problem from the viewpoint of the classes of groups and the methods allow us to prove a result of invariance for some geometric properties of discrete groups.
 Keywords
nonabelian tensor product;actions of groups;quasi simple filtration;homology;homotopy group;
 Language
English
 Cited by
1.
COMMUTING ELEMENTS WITH RESPECT TO THE OPERATOR Λ IN INFINITE GROUPS,;;

대한수학회보, 2016. vol.53. 5, pp.1353-1362 crossref(new window)
2.
ON THE TOPOLOGY OF THE NONABELIAN TENSOR PRODUCT OF PROFINITE GROUPS,;

대한수학회보, 2016. vol.53. 3, pp.751-763 crossref(new window)
1.
The Influence of the Complete Nonexterior Square Graph on some Infinite Groups, Lithuanian Mathematical Journal, 2016, 56, 4, 492  crossref(new windwow)
2.
Decomposition of the Nonabelian Tensor Product of Lie Algebras via the Diagonal Ideal, Bulletin of the Malaysian Mathematical Sciences Society, 2017  crossref(new windwow)
3.
Probabilistic properties of the relative tensor degree of finite groups, Indagationes Mathematicae, 2016, 27, 1, 147  crossref(new windwow)
4.
On topological filtrations of groups, Periodica Mathematica Hungarica, 2016, 72, 2, 218  crossref(new windwow)
5.
ON THE TOPOLOGY OF THE NONABELIAN TENSOR PRODUCT OF PROFINITE GROUPS, Bulletin of the Korean Mathematical Society, 2016, 53, 3, 751  crossref(new windwow)
 References
1.
W. A. Bogley and N. D. Gilbert, The homology of Peiffer products of groups, New York J. Math. 6 (2000), 55-71.

2.
S. G. Brick and M. L. Mihalik, The QSF property for groups and spaces, Math. Z. 220 (1995), no. 2, 207-217. crossref(new window)

3.
S. G. Brick and M. L. Mihalik, Group extensions are quasi-simply-filtrated, Bull. Austral.Math. Soc. 50 (1994), no. 1, 21-27. crossref(new window)

4.
R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177-202. crossref(new window)

5.
R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311-335. crossref(new window)

6.
A. Erfanian, F. G. Russo, and N. H. Sarmin, Some considerations on the nonabelian tensor square of crystallographic groups, Asian-Eur. J. Math. 4 (2011), no. 2, 271-282. crossref(new window)

7.
A. Erfanian, N. M. Mohd Ali, S. Rashid, and N. H. Sarmin, On the nonabelian tensor square and capability of groups of order $p2q$, Arch. Math. (Basel) 97 (2011), no. 4, 299-306. crossref(new window)

8.
L. Funar and D. E. Otera, On the wgsc and qsf tameness conditions for finitely presented groups, Groups Geom. Dyn. 4 (2010), no. 3, 549-596.

9.
N. Gilbert and P. Higgins, The nonabelian tensor product of groups and related constructions, Glasgow Math. J. 31 (1989), no. 1, 17-29. crossref(new window)

10.
T. Hannebauer, On non-abelian tensor squares of linear groups, Arch. Math. (Basel) 55 (1990), no. 1, 30-34. crossref(new window)

11.
N. Inassaridze, Nonabelian tensor products and nonabelian homology of groups, J. Pure Appl. Algebra 112 (1996), no. 2, 191-205. crossref(new window)

12.
I. Nakaoka, Non-abelian tensor products of solvable groups, J. Group Theory 3 (2000), no. 2, 157-167.

13.
D. E. Otera and F. G. Russo, On the WGSC property in some classes of groups, Mediterr. J. Math. 6 (2009), no. 4, 501-508. crossref(new window)

14.
D. J. Robinson, A Course in the Theory of Groups, Springer, Berlin, 1982.

15.
N. R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no. 1, 63-79. crossref(new window)

16.
F. G. Russo, Nonabelian tensor product of soluble minimax groups, Proceedings of Computational Group Theory and Cohomology (Harlaxton, 2008), 179-182, Contemporary Mathematics, American Mathematical Society, New York. 2010.

17.
F. G. Russo, A generalization of groups with many almost normal subgroups, Algebra Discrete Math. 9 (2010), no. 1, 79-85.

18.
J. R. Stallings, Brick's quasi-simple filtrations for groups and 3-manifolds, Procedings of Geometric Group Theory, Vol. 1 (Sussex, 1991), 188-203, London Math. Soc. Lecture Note Ser. 181, Cambridge University Press, Cambridge. 1993.

19.
V. Z. Thomas, The non-abelian tensor product of finite groups is finite: a homology-free proof, Glasg. Math. J. 52 (2010), no. 3, 473-477. crossref(new window)

20.
M. P. Visscher, On the nilpotency class and solvability length of nonabelian tensor product of groups, Arch. Math. (Basel) 73 (1999), no. 3, 161-171. crossref(new window)