JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE
Kim, Jongsu;
  PDF(new window)
 Abstract
We find a -continuous path of Riemannian metrics on , , for for some number > 0 with the following property: is the Euclidean metric on , the scalar curvatures of are strictly decreasing in in the open unit ball and is isometric to the Euclidean metric in the complement of the ball. Furthermore we extend the discussion to the Fubini-Study metric in a similar way.
 Keywords
scalar curvature;
 Language
English
 Cited by
1.
A NOTE ON DECREASING SCALAR CURVATURE FROM FLAT METRICS,;

호남수학학술지, 2013. vol.35. 4, pp.647-655 crossref(new window)
2.
SCALAR CURVATURE DECREASE FROM A HYPERBOLIC METRIC,;;

한국수학교육학회지시리즈B:순수및응용수학, 2013. vol.20. 4, pp.269-276 crossref(new window)
1.
Smooth scalar curvature decrease of big scale on a sphere, Differential Geometry and its Applications, 2014, 37, 120  crossref(new windwow)
2.
A NOTE ON DECREASING SCALAR CURVATURE FROM FLAT METRICS, Honam Mathematical Journal, 2013, 35, 4, 647  crossref(new windwow)
3.
SCALAR CURVATURE DECREASE FROM A HYPERBOLIC METRIC, The Pure and Applied Mathematics, 2013, 20, 4, 269  crossref(new windwow)
 References
1.
M. Abreu, Kahler geometry of toric varieties and extremal metrics, Internat. J. Math. 9 (1998), no. 6, 641-651. crossref(new window)

2.
V. Apostolov and T. Draghici, The curvature and the integrability of almost Kahler manifolds: A survey, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001), 25-53, Fields Inst. Commun., 35, Amer. Math. Soc., Providence, RI, 2003.

3.
R. Beig, P. T. Chrusciel, and R. Schoen, KIDs are non-generic, Ann. Henri Poincare 6 (2005), no. 1, 155-194. crossref(new window)

4.
A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik, 3. Folge, Band 10, Springer-Verlag, 1987.

5.
M. J. Calderbank, L. David, and P. Gauduchon, The Guillemin formula and Kahler metrics on toric symplectic manifolds, J. Symplectic Geometry 1 (2002), no. 4, 767- 784.

6.
J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. crossref(new window)

7.
Y. Kang and J. Kim, Almost Kahler metrics with non-positive scalar curvature which are Euclidean away from a compact set, J. Korean. Math. Soc. 41 (2004), no. 5, 809-820. crossref(new window)

8.
Y. Kang, J. Kim, and S. Kwak, Melting of the Euclidean metric to negative scalar curvature in 3 dimension, Bull. Korean Math. Soc. 49 (2012), no. 3, 581-588. crossref(new window)

9.
M. Lejmi, Extremal almost-Kahler metrics, Internat. J. Math. 21 (2010), no. 12, 1639-1662. crossref(new window)

10.
J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), no. 3, 655-683. crossref(new window)

11.
J. Lohkamp, Curvature h-principles, Ann. of Math. (2) 142 (1995), no. 3, 457-498. crossref(new window)