JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ERROR ESTIMATES OF MIXED FINITE ELEMENT APPROXIMATIONS FOR A CLASS OF FOURTH ORDER ELLIPTIC CONTROL PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ERROR ESTIMATES OF MIXED FINITE ELEMENT APPROXIMATIONS FOR A CLASS OF FOURTH ORDER ELLIPTIC CONTROL PROBLEMS
Hou, Tianliang;
  PDF(new window)
 Abstract
In this paper, we consider the error estimates of the numerical solutions of a class of fourth order linear-quadratic elliptic optimal control problems by using mixed finite element methods. The state and co-state are approximated by the order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order . and -error estimates are derived for both the control and the state approximations. These results are seemed to be new in the literature of the mixed finite element methods for fourth order elliptic control problems.
 Keywords
fourth order elliptic equations;optimal control problems;error estimates;mixed finite element methods;
 Language
English
 Cited by
1.
A posteriori error estimates of mixed finite element solutions for fourth order parabolic control problems, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
 References
1.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

2.
H. Bium and R. Rannacher, On mixed finite element methods in plate bending analysis, Comput. Mech. 6 (1990), 221-236. crossref(new window)

3.
W. Cao and D. Yang, Ciarlet-Raviart mixed finite element approximation for an optimal control problem governed by the first bi-harmonic equation, J. Comput. Appl. Math. 233 (2009), no. 2, 372-388. crossref(new window)

4.
H. Chen and Z. Jiang, $L^{\infty}$-convergence of mixed finite element method for laplacian operator, Korean J. Comput. Appl. Math. 7 (2000), no. 1, 61-82.

5.
Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp. 77 (2008), no. 263, 1269-1291. crossref(new window)

6.
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Internat. J. Numer. Methods Engrg. 75 (2008), no. 8, 881-898. crossref(new window)

7.
Y. Chen, Y. Huang, W. B. Liu, and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput. 42 (2009), no. 3, 382-403.

8.
Y. Chen and W. B. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Comput. Appl. Math. 211 (2008), no. 1, 76-89. crossref(new window)

9.
X. L. Cheng, W. M. Han, and H. C. Huang, Some mixed finite element methods for biharmonic equation, J. Comput. Appl. Math. 126 (2000), no. 1-2, 91-109. crossref(new window)

10.
J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52. crossref(new window)

11.
R. Duran, R. H. Nochetto, and J. Wang, Sharp maximum norm error estimates for FE approximations of the Stokes problems in 2-D, Math. Comp. 51 (1988), no. 184, 491-506.

12.
J. Frehse and R. Rannacher, Eine $L^1$-Ferhlerabschatzung fur diskrete Grundlosungen in der Methode der Finiten Elemente, Finite Elemente (Tagung, Univ. Bonn, Bonn, 1975), pp. 92-114. Bonn. Math. Schrift., No. 89, Inst. Angew. Math., Univ. Bonn, Bonn, 1976.

13.
C. Johnson, On the convergence of a mixed finite-element method for plate bending problems, Numer. Math. 21 (1973), 43-62. crossref(new window)

14.
B. J. Li and S. Y. Liu, On gradient-type optimization method utilizing mixed finite element approximation for optimal boundary control problem governed by bi-harmonic equation, Appl. Math. Comput. 186 (2007), no. 2, 1429-1440. crossref(new window)

15.
R. Li and W. Liu, http://circus.math.pku.edu.cn/AFEPack.

16.
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

17.
P. Monk, A mixed finite element method for the biharmonic equation, SIAM J. Numer. Anal. 24 (1987), no. 4, 737-749. crossref(new window)

18.
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292-315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.

19.
R. Scott, A Mixed method for 4th order problems using linear finite elements, RARIO Anal. Numer. 33 (1978), 681-697.

20.
R. Scott, Optimal $L^{\infty}$-estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681-697.

21.
J. Wang, Asympotic expansion and $L^{\infty}$-error estimates for mixed FEM for second order elliptic problems, Numer. Math. 55 (1989), 401-430. crossref(new window)

22.
X. Xing and Y. Chen, Error estimates of mixed finite element methods for quadratic optimal control problems, J. Comput. Appl. Math. 233 (2010), no. 8, 1812-1820. crossref(new window)