JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON STATISTICAL APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-SCHURER OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON STATISTICAL APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-SCHURER OPERATORS
Ren, Mei-Ying; Zeng, Xiao-Ming;
  PDF(new window)
 Abstract
In this paper, a kind of modified -Bernstein-Schurer operators is introduced. The Korovkin type statistical approximation property of these operators is investigated. Then the rates of statistical convergence of these operators are also studied by means of modulus of continuity and the help of functions of the Lipschitz class. Furthermore, a Voronovskaja type result for these operators is given.
 Keywords
modified q-Bernstein-Schurer operators;statistical approximation property;modulus of continuity;rate of statistical convergence;Voronovskaja type result;
 Language
English
 Cited by
1.
Modified (p,q)-Bernstein-Schurer operators and their approximation properties, Cogent Mathematics, 2016, 3, 1  crossref(new windwow)
2.
Approximation Properties For Modifiedq-Bernstein-Kantorovich Operators, Numerical Functional Analysis and Optimization, 2015, 36, 9, 1178  crossref(new windwow)
3.
On generalized integral Bernstein operators based on q-integers, Applied Mathematics and Computation, 2014, 242, 931  crossref(new windwow)
4.
On (p, q)-analogue of modified Bernstein–Schurer operators for functions of one and two variables, Journal of Applied Mathematics and Computing, 2017, 54, 1-2, 1  crossref(new windwow)
5.
Some approximation properties of a Durrmeyer variant ofq-Bernstein-Schurer operators, Mathematical Methods in the Applied Sciences, 2016, 39, 18, 5636  crossref(new windwow)
6.
Stancu–Schurer–Kantorovich operators based on q-integers, Applied Mathematics and Computation, 2015, 259, 896  crossref(new windwow)
7.
Kantorovich variant of a new kind of q -Bernstein-Schurer operators, Mathematical Methods in the Applied Sciences, 2017  crossref(new windwow)
8.
qBernstein–Schurer–Durrmeyer type operators for functions of one and two variables, Applied Mathematics and Computation, 2016, 275, 372  crossref(new windwow)
9.
Approximation properties of q-Kantorovich-Stancu operator, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
10.
A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers, Journal of Inequalities and Applications, 2017, 2017, 1  crossref(new windwow)
11.
q-Bernstein-Schurer-Kantorovich type operators, Bollettino dell'Unione Matematica Italiana, 2015, 8, 3, 169  crossref(new windwow)
12.
Approximation properties for King's type modifiedq-Bernstein-Kantorovich operators, Mathematical Methods in the Applied Sciences, 2015, 38, 18, 5242  crossref(new windwow)
13.
Weighted statistical convergence based on generalized difference operator involving (p,q)-gamma function and its applications to approximation theorems, Journal of Mathematical Analysis and Applications, 2017, 448, 2, 1633  crossref(new windwow)
14.
Approximation of Schurer type q-Bernstein-Kantorovich operators, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
 References
1.
O. Dalmanoglu and O. Dogru, On statistical approximation properties of Kantorovich type q-Bernstein operators, Math. Comput. Modelling 52 (2010), no. 5-6, 760-771. crossref(new window)

2.
O. Dogru and K. Kanat, On statistical approximation properties of the Kantorovich type Lupas operators, Math. Comput. Modelling 55 (2012), no. 3-4, 1610-1621. crossref(new window)

3.
O. Dogru, On statistical approximation properties of Stancu type bivariate generalization of q-Balas-Szabados operators in: Numerical analysis and approximation theory, 179-194, Casa Cartii de stiinta, Cluj-Napoca, 2006.

4.
S. Ersan and O. Dogru, Statistical approximation properties of q-Bleimann, Butzer and Hahn operators, Math. Comput. Modelling 49 (2009), no. 7-8, 1595-1606. crossref(new window)

5.
H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.

6.
V. Gupta and C. Radu, Statistical approximation properties of q-Baskokov-Kantorovich operators, Cent. Eur. J. Math. 7 (2009), no. 4, 809-818. crossref(new window)

7.
G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its applications, Cambridge University press, Cambridge, UK, Vol. 35, 1990.

8.
A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129-138. crossref(new window)

9.
V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.

10.
C. V. Muraru, Note on q-Bernstein-Schurer operators, Stud. Univ. Babes-Bolyai Math. 56 (2011), no. 2, 480-495.

11.
I. Niven, H. S. Zuckerman, and H. Montgomery, An Introduction to the Theory Numbers, 5th ed. Wiley, New York, 1991.

12.
M. Orkcu and O. Dogru, Weighted statistical approximation by Kantorovich type q-Szasz-Mirakjan operators, Appl. Math. Comput. 217 (2011), no. 20, 7913-7919. crossref(new window)

13.
G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), no. 1-4, 511-518.

14.
F. Schurer, Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft: Report, 1962.