JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS
Kudo, Shotaro;
  PDF(new window)
 Abstract
The center of the Lie group is isomorphic to . If divides , the quotient is also a Lie group. Such groups are locally isomorphic, and their Weyl groups are the symmetric group . However, the integral representations of the Weyl groups are not equivalent. Under the mod reductions, we consider the structure of invariant rings for $W
 Keywords
invariant theory;unstable algebra;pseudoreflection group;Lie group;p-compact group;classifying space;
 Language
English
 Cited by
 References
1.
K. K. S. Andersen and J. Grodal, The classification of 2-compact groups, J. Amer. Math. Soc. 22 (2009), no. 2, 387-436

2.
M. Craig, A characterization of certain extreme forms, Illinois J. Math. 20 (1976), no. 4, 706-717.

3.
W. G. Dwyer and C. W. Wilkerson, Kahler differentials, the T-functor, and a theorem of Steinberg, Trans. Amer. Math. Soc. 350 (1998), no. 12, 4919-4930. crossref(new window)

4.
W. G. Dwyer and C. W. Wilkerson, Poincare duality and Steinberg's theorem on rings of coinvariants, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3769-3775. crossref(new window)

5.
K. Ishiguro, Projective unitary groups and K-theory of classifying spaces, Fukuoka Univ. Sci. Rep. 28 (1998), no. 1, 1-6.

6.
K. Ishiguro, Invariant rings and dual representations of dihedral groups, J. Korean Math. Soc. 47 (2010), no. 2, 299-309. crossref(new window)

7.
R. M. Kane, Reflection Groups and Invariant Theory, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 5. Springer-Verlag, 2001.

8.
L. Smith, Polynomial Invariants of Finite Groups, A. K. Peters, Ltd., Wellesley, MA, 1995.