JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES
Nam, Kyesook;
  PDF(new window)
 Abstract
Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in . Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < . In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.
 Keywords
weighted harmonic Bergman spaces;unit ball;upper half-space;
 Language
English
 Cited by
 References
1.
S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.

2.
B. R. Choe, H. Koo, and Y. J. Lee, Positive Schatten class Toeplitz operators on the ball, Studia Math. 189 (2008), no. 1, 65-90. crossref(new window)

3.
B. R. Choe and K. Nam, Berezin transform and Toeplitz operators on harmonic Bergman spaces, J. Funct. Anal. 257 (2009), no. 10, 3135-3166. crossref(new window)

4.
B. R. Choe and K. Nam, Double integral characterizations of harmonic Bergman spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 889-909. crossref(new window)

5.
B. R. Choe and H. Yi, Representations and interpolations of harmonic Bergman functions on half spaces, Nagoya Math. J. 151 (1998), 51-89.

6.
R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Representation theorems for Hardy spaces, pp. 11-66, Asterisque, 77, Soc. Math. France, Paris, 1980.

7.
G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423.

8.
H. Koo, K. Nam, and H. Yi, Weighted harmonic Bergman functions on half-spaces, J. Korean Math. Soc. 42 (2005), no. 5, 975-1002. crossref(new window)

9.
S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterization of Bergman spaces on the unit ball of Cn, Glasgow Math. J. 51 (2009), 315-330. crossref(new window)

10.
S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of Cn. II, Canad. Math. Bull. 55 (2012), no. 1, 146-152. crossref(new window)

11.
K. Nam, K. Na, and E. S. Choi, Note on characterizations of the harmonic Bergman space, Spectral theory, mathematical system theory, evolution equations, differential and difference equations, 491-496, Oper. Theory Adv. Appl., 221, Birkhuser/Springer Basel AG, Basel, 2012.

12.
K. Nam and H. Yi, Harmonic conjugates of weighted harmonic Bergman functions on half-spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 449-457. crossref(new window)

13.
M. Pavlovic, Hardy-Stein type characterization of harmonic Bergman spaces, Potential Anal. 32 (2010), no. 1, 1-15. crossref(new window)

14.
M. Pavlovic, On subharmonic behavior and oscilation of functions on balls in Rn, Publ. Inst. Math. (Beograd) (N.S.) 55(69) (1994), 18-22.

15.
W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), no. 2, 633-660. crossref(new window)

16.
H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull. 52 (2009), no. 4, 613-626. crossref(new window)