JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITENESS OF MAPPING CLASS GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITENESS OF MAPPING CLASS GROUPS
Hong, Sungbok; Yang, Jin;
  PDF(new window)
 Abstract
We prove that the mapping class group of a non-Haken orientable irreducible 3-manifold is finite and we show that the quotient group of the mapping class group by the rotation group is virtually torsion-free if the manifold does not have 2-sphere boundary components.
 Keywords
non-Haken manifold;mapping class group;3-manifold;
 Language
English
 Cited by
 References
1.
R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Spriner Verlag, Berlin, 1992.

2.
M. Boileau and J.-P. Otal, Groupe des diffeotopies de certaines varietes de Seifert, C. R. Acad. Sci. Paris Ser. I Math. 303 (1986), no. 1, 19-22.

3.
M. Boileau and J.-P. Otal, Scindements de Heegaard et groupe des homeotopies des petites varietes de Seifert, Invent. Math. 106 (1991), no. 1, 85-107. crossref(new window)

4.
A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-491. crossref(new window)

5.
R. Canary and D. McCullough, Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups, Mem. Amer. Math. Soc. 172 (2004) no. 812, 1-218.

6.
M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91-119. crossref(new window)

7.
D. Gabai, G. R. Meyerhoff, and N. Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic, Ann. of Math. (2) 157 (2003), no. 2, 335-431. crossref(new window)

8.
V. Guirardel and G. Levitt, The outer space of a free product, Proc. Lond. Math. Soc. (3) 94 (2007), no. 3, 695-714. crossref(new window)

9.
J. Hempel, 3-manifolds, American Mathematical Society, 2004.

10.
W. Jaco, Lectures on Three Manifold Topology, American Mathematical Society, 1980.

11.
D. McCullough, Topological and algebraic automorphisms of 3-manifolds, Groups of self-equivalences and related topics (Montreal, PQ, 1988), 102-113, Lecture Notes in Math., 1425, Springer, Berlin, 1990.

12.
D. McCullough, Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom. 33 (1991), no. 1, 1-65. crossref(new window)

13.
D. McCullough, Isometries of elliptic 3-manifolds, J. London Math. Soc. (2) 65 (2002), no. 1, 167-182. crossref(new window)

14.
D. McCullough, Three manifolds and their mappings, Lecture Notes Series, 1-82, no. 26, Seoul National University, 1995.

15.
D. McCullough and A. Miller, Homeomorphisms of 3-manifolds with compressible boundary, Mem. Amer. Math. Soc. 61 (1986) no. 344, 1-100.

16.
P. Scott, There are no fake Seifert fibre spaces with infinite 1, Ann. of Math. (2) 117 (1983), no. 1, 35-70. crossref(new window)

17.
F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. crossref(new window)

18.
F. Waldhausen, Recent results on sufficiently large 3-manifolds, In Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, pp. 21-38, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978.