JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP
Kim, Young Ho; Turgay, Nurettin Cenk;
  PDF(new window)
 Abstract
In this paper, we study rotational and helicoidal surfaces in Euclidean 3-space in terms of their Gauss map. We obtain a complete classification of these type of surfaces whose Gauss maps G satisfy for some constant vector and smooth function , where denotes the Cheng-Yau operator.
 Keywords
Gauss map;-pointwise 1-type;Cheng-Yau operator;rotational surface;helicoidal surface;Lie point symmetry;
 Language
English
 Cited by
1.
RULED SURFACES AND GAUSS MAP,;

대한수학회보, 2015. vol.52. 5, pp.1661-1668 crossref(new window)
1.
RULED SURFACES AND GAUSS MAP, Bulletin of the Korean Mathematical Society, 2015, 52, 5, 1661  crossref(new windwow)
2.
Invariant surfaces with pointwise 1-type Gauss map in Sol3, Journal of Geometry, 2015, 106, 3, 503  crossref(new windwow)
3.
Classifications of Canal Surfaces with L1-Pointwise 1-Type Gauss Map, Milan Journal of Mathematics, 2015, 83, 1, 145  crossref(new windwow)
 References
1.
L. J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006), 113-127.

2.
G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Appl. Math. Sciences 81, Springer-Verlag, New York, 1989.

3.
B.-Y. Chen, Total Mean Curvature and Submanifold of Finite Type, World Scientific, 1984.

4.
B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.

5.
B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. crossref(new window)

6.
B.-Y. Chen, J. M. Morvan, and T. Nore, Energy, tension and finite type maps, Kodai Math. J. 9 (1986), no. 3, 406-418. crossref(new window)

7.
B.-Y. Chen and P. Piccinni, Submanifolds with Finite Type Gauss Map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. crossref(new window)

8.
S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195-204. crossref(new window)

9.
M. Choi, D.-S. Kim, and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46 (2009), no. 1, 215-223. crossref(new window)

10.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.

11.
M. Choi, Y. H. Kim, L. Huili, and D. W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-space, Bull. Korean Math. Soc. 47 (2010), no. 4, 859-881. crossref(new window)

12.
M. Choi, Y. H. Kim, and G.-C. Park, Helicoidal surfaces and their Gauss map in Minkowski 3-space II, Bull. Korean Math. Soc. 46 (2009), no. 3, 567-576. crossref(new window)

13.
M. P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J. (2) 34 (1982), no. 3, 425-435. crossref(new window)

14.
U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space $\mathbb{E}^4$ with pointwise 1-type Gauss map, Math. Commun. (accepted).

15.
S. M. B. Kashani, On some $L_1$-finite type (hyper)surfaces in $\mathbb{R}^{n+1}$, Bull. Korean Math. Soc. 46 (2009), no. 1, 35-43. crossref(new window)

16.
U. H. Ki, D.-S. Kim, Y. H. Kim, and Y. M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), no. 1, 317-338.

17.
Y. H. Kim and N. C. Turgay, On the surfaces in $\mathbb{E}^3$ with L1 pointwise 1-type Gauss map, to appear in Bull. Korean Math. Soc.

18.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. crossref(new window)

19.
Y. H. Kim and D. W. Yoon, Classification of rotation surfaces in pseudo-Euclidean space. J. Korean Math. 41 (2004), no. 2, 379-396. crossref(new window)

20.
Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mount. J. Math. 35 (2005), no. 5, 1555-1581. crossref(new window)

21.
B. O'Neill, Elementary Differential Geometry, Revised second edition, Elsevier/Academic Press, Amsterdam, 2006.

22.
D. W. Yoon, Rotation surfaces with finite type Gauss map in $E^4$, Indian J. Pure. Appl. Math. 32 (2001), no. 12, 1803-1808.

23.
D. W. Yoon, Some properties of the Clifford torus as rotation surface, Indian J. Pure. Appl. Math. 34 (2004), no. 6, 907-915.