JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CLASS NUMBER DIVISIBILITY OF QUADRATIC FUNCTION FIELDS IN EVEN CHARACTERISTIC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CLASS NUMBER DIVISIBILITY OF QUADRATIC FUNCTION FIELDS IN EVEN CHARACTERISTIC
Bae, Sunghan; Jung, Hwanyup;
  PDF(new window)
 Abstract
We find a lower bound on the number of real/inert imagi-nary/ramified imaginary quadratic extensions of the function field whose ideal class groups have an element of a fixed order, where is a power of 2.
 Keywords
class number divisibility;quadratic function field;even characteristic;
 Language
English
 Cited by
 References
1.
S. Bae, Real quadratic function fields of Richaud-Degert type with ideal class number one, Proc. Amer. Math. Soc. 140 (2012), no. 2, 403-414. crossref(new window)

2.
D. A. Cardon and M. R. Murty, Exponents of class groups of quadratic function fields over finite fields, Canad. Math. Bull. 44 (2001), no. 4, 398-407. crossref(new window)

3.
K. Chakraborty and A. Mukhopadhyay, Exponents of class groups of real quadratic function fields, Proc. Amer. Math. Soc. 132 (2004), no. 7, 1951-1955. crossref(new window)

4.
C. Friesen, Class number divisibility in real quadratic function fields, Canad. Math. Bull. 35 (1992), no. 3, 361-370. crossref(new window)

5.
R. Murty, Exponents of class groups of quadratic fields, Topics in number theory (University Park, PA, 1997), 229-239, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999.

6.
R. J. Zuccherato, The continued fraction algorithm and regulator for quadratic function fields of characteristic 2, J. Algebra 190 (1997), no. 2, 563-587. crossref(new window)