JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES
Kim, Daeyeoul; Kim, Aeran; Sankaranarayanan, Ayyadurai;
  PDF(new window)
 Abstract
In this paper, we consider several convolution sums, namely, (), (), and (), and establish certain identities involving their finite products. Then we extend these types of product convolution identities to products involving Faulhaber sums. As an application, an identity involving the Weierstrass -function, its derivative and certain linear combination of Eisenstein series is established.
 Keywords
sum of divisor functions;convolution sums;Faulhaber sums;Eisenstein series;elliptic function;
 Language
English
 Cited by
 References
1.
B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.

2.
B. C. Berndt and A. J. Yee, Congruences for the coecients of quotients of Eisenstein series, Acta Arith. 104 (2002), no. 3, 297-308. crossref(new window)

3.
J. W. L. Glaisher, On the square of the series in which the coecients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156{163.

4.
H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), no. 5, 1593-1622. crossref(new window)

5.
J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number theory for the millennium, II (Urbana, IL, 2000), 229-274, A K Peters, Natick, MA, 2002.

6.
D. Kim, A. Kim, and Y. Li, Convolution sums arising from the divisor functions, J. Korean Math. Soc. 50 (2013), no. 2, 331-360. crossref(new window)

7.
D. Kim, A. Kim, and H. Park, Congruences of the Weierstrass $\delta(x)$ and ${\delta}"(x)$(x =$\frac{1}{2}$, $\frac{\tau}{2}$, $\frac{{\tau}+1}{2}$) - functions on divisors, Bull. Korean Math. Soc. 50 (2013), no. 1, 241-261. crossref(new window)

8.
D. Kim and J. K. Koo, Algebraic integers as values of elliptic functions, Acta Arith. 100 (2001), no. 2, 105-116. crossref(new window)

9.
D. Kim and M. Kim, Divisor functions and Weierstrass functions arising from q-series, Bull. Korean Math. Soc. 49 (2012), no. 4, 693-704. crossref(new window)

10.
G. Mel , On some modular identities, Number theory (Eger, 1996), 371-382, de Gruyter, Berlin, 1998.

11.
S. Ramanujan, Collected Papers of Srinivasa Ramanujan, AMS Chelsea, Providence, 2000.

12.
S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), no. 9, 159-184.

13.
J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, 1994.

14.
K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.