JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SOME NEW THEOREMS ON MULTIPLIERS IN HARMONIC FUNCTION SPACES IN HIGHER DIMENSION II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SOME NEW THEOREMS ON MULTIPLIERS IN HARMONIC FUNCTION SPACES IN HIGHER DIMENSION II
Arsenovic, Milos; Shamoyan, Romi F.;
  PDF(new window)
 Abstract
We present various new sharp assertions on multipliers in mixed norm, weighted Hardy and new Lizorkin-Triebel spaces of harmonic functions in higher dimension. Some results are new even in onedimensional case.
 Keywords
multipliers;spaces of harmonic functions;Bergman type mixed norm spaces;spherical harmonics;
 Language
English
 Cited by
1.
A characterization of the inclusions between mixed norm spaces, Journal of Mathematical Analysis and Applications, 2015, 429, 2, 942  crossref(new windwow)
2.
Corrigendum to “A characterization of the inclusions between mixed norm spaces” [J. Math. Anal. Appl. 429 (2) (2015) 942–955], Journal of Mathematical Analysis and Applications, 2016, 433, 2, 1904  crossref(new windwow)
 References
1.
A. B. Alexandrov, Essays on non Locally Convex Hardy Classes, in Complex Analysis and Spectral Theory, 1-89, Lecture Notes in Mathematics 864, 1981.

2.
A. B. Alexandrov, On decrease in mean at the boundary of harmonic functions, in Russian, Algebra i Analiz, Tom 7 (1995), no. 4, 1-49.

3.
M. Arsenovic and R. F. Shamoyan, Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension, J. Siberian Federal University. Mathematics & Physics 5 (2012), no. 3, 291-302.

4.
M. Djrbashian and F. Shamoian, Topics in the theory of $A_{\alpha}^{p}$ classes, Teubner Texts in Mathematics, 105. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988.

5.
M. Jevtic and M. Pavlovic, Harmonic Bergman functions on the unit ball in $\mathbb{R}^n$, Acta Math. Hungar. 85 (1999), no. 1-2, 81-96. crossref(new window)

6.
M. Jevtic and M. Pavlovic, Harmonic Besov spaces on the unit ball in $\mathbb{R}^n$, Rocky Mountain J. Math. 31 (2001), no. 4, 1305-1316. crossref(new window)

7.
J. M. Ortega and J. Fabrega, Holomorphic Triebel-Lizorkin Spaces, J. Funct. Anal. 151 (1997), no. 1, 177-212. crossref(new window)

8.
M. Pavlovic, Convolution in the harmonic Hardy space hp with 0 < p < 1, Proc. Amer. Math. Soc. 109 (1990), no. 1, 129-134.

9.
M. Pavlovic, Multipliers of the vanishing Hardy classes, Publ. Inst. Math. (Beograd) (N.S.) 52(66) (1992), 34-36.

10.
R. F. Shamoyan, On multipliers from Bergman type to Hardy spaces in polydisk, Ukrain. Mat. Zh. 52 (2000), no. 10, 1405-1414; translation in Ukrainian Math. J. 52 (2000), no. 10, 1606-1617.

11.
R. F. Shamoyan, Holomorphic Lizorkin Triebel type spaces in the unit polydisk, Izv. NAN Ar-menii 3 (2002), 57-78.

12.
R. F. Shamoyan and A. Abkar, On multipliers of spaces of harmonic functions in the unit ball of $\mathbb{R}^n$, J. Inequalities and Special Functions 3 (2012), no. 1, 1-9.

13.
A. Shields and D. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279.

14.
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.

15.
M. Zakaryan, Integral representations and duality in weighted spaces of harmonic functions in the unit ball, in Russian, Ph.D. Thesis, Erevan State University, 1999.