JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME PROPERTIES OF EVOLUTION ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME PROPERTIES OF EVOLUTION ALGEBRAS
Camacho, L.M.; Gomez, J.R.; Omirov, B.A.; Turdibaev, R.M.;
  PDF(new window)
 Abstract
The paper is devoted to the study of finite dimensional complex evolution algebras. The class of evolution algebras isomorphic to evolution algebras with Jordan form matrices is described. For finite dimensional complex evolution algebras the criterium of nilpotency is established in terms of the properties of corresponding matrices. Moreover, it is proved that for nilpotent -dimensional complex evolution algebras the possible maximal nilpotency index is .
 Keywords
evolution algebra;commutative algebra;isomorphism;nilpotency;
 Language
English
 Cited by
1.
Evolution algebras of arbitrary dimension and their decompositions, Linear Algebra and its Applications, 2016, 495, 122  crossref(new windwow)
2.
Few remarks on evolution algebras, Journal of Algebra and Its Applications, 2015, 14, 04, 1550053  crossref(new windwow)
3.
Algebraic computation of genetic patterns related to three-dimensional evolution algebras, Applied Mathematics and Computation, 2017  crossref(new windwow)
4.
Nilpotent evolution algebras over arbitrary fields, Linear Algebra and its Applications, 2015, 486, 345  crossref(new windwow)
5.
Evolution algebras and graphs, Journal of Algebra and Its Applications, 2015, 14, 07, 1550103  crossref(new windwow)
6.
Classification of asexual diploid organisms by means of strongly isotopic evolution algebras defined over any field, Journal of Algebra, 2017, 472, 573  crossref(new windwow)
7.
On Evolution Algebras, Algebra Colloquium, 2014, 21, 02, 331  crossref(new windwow)
8.
On real chains of evolution algebras, Linear and Multilinear Algebra, 2015, 63, 3, 586  crossref(new windwow)
 References
1.
J. M. Casas, M. Ladra, B. A. Omirov, and U. A. Rozikov, On evolution algebras, Algebra Colloquium. arXiv:1004.1050v1 (to appear).

2.
J. M. Casas, M. Ladra, and U. A. Rozikov, A chain of evolution, Linear Algebra Appl. 435 (2011), no. 4, 852-870. crossref(new window)

3.
I. M. H. Etherington, Genetic algebras, Proc. Roy. Soc. Edinburgh 59 (1939), 242-258.

4.
I. M. H. Etherington, Duplication of linear algebras, Proc. Edinburgh Math. Soc. 2 (1941), no. 6, 222-230.

5.
I. M. H. Etherington, Non-associative algebra and the symbolism of genetics, Proc. Roy. Soc. Edin-burgh. Sect. B. 61 (1941), 24-42.

6.
V. Glivenkov, Algebra Mendelienne comptes rendus, (Doklady) de l'Acad. des Sci. de I'URSS 4 (1936), no. 13, 385-386 (in Russian).

7.
V. A. Kostitzin, Sur les coefficients mendeliens d'heredite, Comptes rendus de l'Acad. des Sci. 206 (1938), 883-885 (in French).

8.
Y. I. Lyubich, Mathematical Structures in Population Genetics, Biomathematics, 22, Springer-Verlag, Berlin, 1992.

9.
E. Mossel, Reconstruction on trees: beating the second eigenvalue, Ann. Appl. Probab. 11 (2001), no. 1, 285-300. crossref(new window)

10.
A. Serebrowsky, On the properties of the Mendelian equations, Doklady A.N.SSSR 2 (1934), 33-36 (in Russian).

11.
J. P. Tian, Evolution algebras and their applications, Lecture Notes in Mathematics, 1921, Springer-Verlag, Berlin, 2008.

12.
J. P. Tian and P. Vojtechovsky, Mathematical concepts of evolution algebras in non-Mendelian genetics, Quasigroups Related Systems 14 (2006), no. 1, 111-122.