JOURNAL BROWSE
Search
Advanced SearchSearch Tips
C1-STABLY SHADOWABLE CONSERVATIVE DIFFEOMORPHISMS ARE ANOSOV
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
C1-STABLY SHADOWABLE CONSERVATIVE DIFFEOMORPHISMS ARE ANOSOV
Bessa, Mario;
  PDF(new window)
 Abstract
In this short note we prove that if a symplectomorphism is -stably shadowable, then is Anosov. The same result is obtained for volume-preserving diffeomorphisms.
 Keywords
Anosov maps;shadowing;uniform hyperbolicity;
 Language
English
 Cited by
1.
STABLE WEAK SHADOWABLE SYMPLECTOMORPHISMS ARE PARTIALLY HYPERBOLIC,;;

대한수학회논문집, 2014. vol.29. 2, pp.285-293 crossref(new window)
1.
STABLE WEAK SHADOWABLE SYMPLECTOMORPHISMS ARE PARTIALLY HYPERBOLIC, Communications of the Korean Mathematical Society, 2014, 29, 2, 285  crossref(new windwow)
2.
Shadowing, expansiveness and specification for C1-conservative systems, Acta Mathematica Scientia, 2015, 35, 3, 583  crossref(new windwow)
3.
Symplectic diffeomorphisms with limit shadowing, Asian-European Journal of Mathematics, 2017, 10, 02, 1750068  crossref(new windwow)
 References
1.
A. Arbieto and T. Catalan, Hyperbolicity in the Volume Preserving Scenario, Ergod. Th. & Dynam. Sys. (at press) DOI: http://dx.doi.org/10.1017/etds.2012.111. crossref(new window)

2.
A. Arbieto and C. Matheus, A pasting lemma and some applications for conservative systems, With an appendix by David Diica and Yakov Simpson-Weller., Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1399-1417.

3.
A. Avila, On the regularization of conservative maps, Acta Math. 205 (2010), no. 1, 5-18. crossref(new window)

4.
M. Bessa and J. Rocha, A remark on the topological stability of symplectomorphisms, Appl. Math. Lett. 25 (2012), no. 2, 163-165. crossref(new window)

5.
C. Bonatti, L. Diaz, and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), no. 2, 355-418. crossref(new window)

6.
V. Horita and A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincare Anal. Non Lineaire 23 (2006), no. 5, 641-661. crossref(new window)

7.
K. Moriyasu The topological stability of diffeomorphisms, Nagoya Math. J. 123 (1991), 91-102.

8.
J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. crossref(new window)

9.
J. Moser and E. Zehnder, Notes on dynamical systems, Courant Lecture Notes in Mathematics, 12. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2005.

10.
S. Newhouse, Quasi-eliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (1977), no. 5, 1061-1087. crossref(new window)

11.
S. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math., 1706, Springer-Verlag, Berlin, 1999.

12.
K. Sakai, $C^1$-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029.

13.
P. Walters, On the pseudo-orbit tracing property and its relationship to stability, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 231-244, Lecture Notes in Math., 668, Springer, Berlin, 1978.

14.
E. Zehnder, Note on smoothing symplectic and volume-preserving diffeomorphisms, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), pp. 828-854. Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977.