JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Extensions of linearly McCoy rings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Extensions of linearly McCoy rings
Cui, Jian; Chen, Jianlong;
  PDF(new window)
 Abstract
A ring R is called linearly McCoy if whenever linear polynomials , satisfy $f(x)g(x)
 Keywords
polynomial ring;linearly McCoy ring;matrix ring;semi-commutative ring;McCoy ring;
 Language
English
 Cited by
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. crossref(new window)

2.
G. M. Bergman, The Diamond Lemma for ring theory, Adv. Math. 29 (1978), no. 2, 178-218. crossref(new window)

3.
A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.

4.
V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. crossref(new window)

5.
J. Cui and J. L. Chen, Linearly McCoy rings and their generalizations, Commun. Math. Res. 26 (2010), no. 2, 159-175.

6.
J. Cui and J. L. Chen, On McCoy modules, Bull. Korean Math. Soc. 48 (2011), no. 1, 23-33. crossref(new window)

7.
Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. crossref(new window)

8.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. crossref(new window)

9.
Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. crossref(new window)

10.
M. T. Kosan, Extensions of rings having McCoy condition, Canad. Math. Bull. 52 (2009), no. 2, 267-272. crossref(new window)

11.
T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.

12.
Z. Lei, J. L. Chen, and Z. L. Ying, A question on McCoy rings, Bull. Aust. Math. Soc. 76 (2007), no. 1, 137-141. crossref(new window)

13.
J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.

14.
N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. crossref(new window)

15.
P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. crossref(new window)

16.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

17.
Z. L. Ying, J. L. Chen, and Z. Lei, Extensions of McCoy rings, Northeast. Math. J. 24 (2008), no. 1, 85-94.