JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MINIMAX PROBLEMS OF UNIFORMLY SAME-ORDER SET-VALUED MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MINIMAX PROBLEMS OF UNIFORMLY SAME-ORDER SET-VALUED MAPPINGS
Zhang, Yu; Li, Shengjie;
  PDF(new window)
 Abstract
In this paper, a class of set-valued mappings is introduced, which is called uniformly same-order. For this sort of mappings, some minimax problems, in which the minimization and the maximization of set-valued mappings are taken in the sense of vector optimization, are investigated without any hypotheses of convexity.
 Keywords
minimax theorem;cone loose saddle point;uniformly same-order mapping;vector optimization;
 Language
English
 Cited by
1.
Minimax problems for set-valued mappings with set optimization, Numerical Algebra, Control and Optimization, 2014, 4, 4, 327  crossref(new windwow)
 References
1.
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York, 1984.

2.
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.

3.
S. S. Chang, G. M. Lee, and B. S. Lee, Minimax inequalities for vector-valued mappings on W-spaces, J. Math. Anal. Appl. 198 (1996), no. 2, 371-380. crossref(new window)

4.
G. Y. Chen, A generalized section theorem and a minimax inequality for a vector-valued mapping, Optimization 22 (1991), no. 5, 745-754. crossref(new window)

5.
G. Y. Chen and X. X. Huang, Ekeland's $\epsilon$-variational principle for set-valued mappings, Math. Methods Oper. Res. 48 (1998), no. 2, 181-186. crossref(new window)

6.
G. Y. Chen, X. X. Huang, and X. Q. Yang, Vector Optimization, Set-Valued and Variational Analysis. Springer, Berlin, Heidelberg, 2005.

7.
Y. J. Cho, S. S. Chang, J. S. Jung, S. M. Kang, and X. Wu, Minimax theorems in probabilistic metric spaces, Bull. Austral. Math. Soc. 51 (1995), no. 1, 103-119. crossref(new window)

8.
Y. J. Cho, M. R. Delavar, S. A. Mohammadzadeh, and M. Roohi, Coincidence theorems and minimax inequalities in abstract convex spaces, J. Inequal. Appl. 126 (2011), 14 pp.

9.
K. Fan, A minimax inequality and applications, In: Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), pp. 103-13. Academic Press, New York, 1972.

10.
F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl. 60 (1989), no. 1, 19-31. crossref(new window)

11.
X. H. Gong, The strong minimax theorem and strong saddle points of vector-valued functions, Nonlinear Anal. 68 (2008), no. 8, 2228-2241. crossref(new window)

12.
J. Jahn, Vector Optimization, Theory, Applications, and Extensions, Springer, Berlin, Germany, 2004.

13.
I. S. Kim and Y. T. Kim, Loose saddle points of set-valued maps in topological vector spaces, Appl. Math. Lett. 12 (1999), no. 8, 21-26.

14.
W. K. Kim and S. Kum, On a non-compact generalization of Fan's minimax theorem, Taiwanese J. Math. 14 (2010), no. 2, 347-358.

15.
G. Y. Li, A note on nonconvex minimax theorem with separable homogeneous polynomials, J. Optim. Theory Appl. 150 (2011), no. 1, 194-203. crossref(new window)

16.
S. J. Li, G. Y. Chen, and G. M. Lee, Minimax theorems for set-valued mappings, J. Optim. Theory Appl. 106 (2000), no. 1, 183-200. crossref(new window)

17.
X. B. Li, S. J. Li, and Z. M. Fang, A minimax theorem for vector valued functions in lexicographic order, Nonlinear Anal. 73 (2010), no. 4, 1101-1108. crossref(new window)

18.
L. J. Lin and Y. L. Tsai, On vector quasi-saddle points of set-valued maps, In: Eberkard, A., Hadjisavvas, N., Luc, D. T., (eds.) Generalized Convexity, Generalized Monotonicity and Applications, pp. 311-319. Kluwer Academic Publishers, Dordrecht, The Nether-lands, 2005.

19.
D. T. Luc and C. Vargas, A saddlepoint theorem for set-valued maps, Nonlinear Anal. 18 (1992), no. 1, 1-7. crossref(new window)

20.
J. W. Nieuwenhuis, Some minimax theorems in vector-valued functions, J. Optim. Theory Appl. 40 (1983), no. 3, 463-475. crossref(new window)

21.
S. Park, The Fan minimax inequality implies the Nash equilibrium theorem, Appl. Math. Lett. 24 (2011), no. 12, 2206-2210. crossref(new window)

22.
D. S. Shi and C. Ling, Minimax theorems and cone saddle points of uniformly same-order vector-valued functions, J. Optim. Theory Appl. 84 (1995), no. 3, 575-587. crossref(new window)

23.
K. K. Tan, J. Yu, and X. Z. Yuan, Existence theorems for saddle points of vector-valued maps, J. Optim. Theory Appl. 89 (1996), no. 3, 731-747. crossref(new window)

24.
T. Tanaka, Some minimax problems of vector-valued functions, J. Optim. Theory Appl. 59 (1988), no. 3, 505-524. crossref(new window)

25.
M. G. Yang, J. P. Xu, N. J. Huang, and S. J. Yu, Minimax theorems for vector-valued mappings in abstract convex spaces, Taiwanese J. Math. 14 (2010), no. 2, 719-732.

26.
Z. Yang and Y. J. Pu, Generalized Browder-type fixed point theorem with strongly geodesic convexity on Hadamard manifolds with applications, Indian J. Pure Appl. Math. 43 (2012), no. 2, 129-144. crossref(new window)

27.
Q. B. Zhang, M. J. Liu, and C. Z. Cheng, Generalized saddle points theorems for set-valued mappings in locally generalized convex spaces, Nonlinear Anal. 71 (2009), no. 1-2, 212-218. crossref(new window)

28.
Y. Zhang and S. J. Li, Ky Fan minimax inequalities for set-valued mappings, Fixed Point Theory Appl. 64 (2012), 12 pp.

29.
Y. Zhang, S. J. Li, and S. K. Zhu, Minimax problems for set-valued mappings, Numer. Funct. Anal. Optim. 33 (2012), no. 2, 239-253. crossref(new window)