JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WAITING TIME DISTRIBUTION IN THE M/M/M RETRIAL QUEUE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WAITING TIME DISTRIBUTION IN THE M/M/M RETRIAL QUEUE
Kim, Jeongsim; Kim, Jerim;
  PDF(new window)
 Abstract
In this paper, we are concerned with the analysis of the waiting time distribution in the M/M/m retrial queue. We give expressions for the Laplace-Stieltjes transform (LST) of the waiting time distribution and then provide a numerical algorithm for calculating the LST of the waiting time distribution. Numerical inversion of the LSTs is used to calculate the waiting time distribution. Numerical results are presented to illustrate our results.
 Keywords
M/M/m retrial queue;waiting time;Laplace-Stieltjes transform;first passage time;
 Language
English
 Cited by
1.
Scheduling and performance analysis under a stochastic model for electric vehicle charging stations, Omega, 2017, 66, 278  crossref(new windwow)
2.
A survey of retrial queueing systems, Annals of Operations Research, 2016, 247, 1, 3  crossref(new windwow)
 References
1.
I. Abate and W. Whitt, The Fourier-series method for inverting transforms of probability distributions, Queueing Systems Theory Appl. 10 (1992), no. 1-2, 5-87. crossref(new window)

2.
J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top 7 (1999), no. 2, 187-211. crossref(new window)

3.
J. R. Artalejo, Accessible bibliography on retrial queues, Math. Comput. Model. 30 (1999), 1-6.

4.
J. R. Artalejo, Accessible bibliography on retrial queues: progress in 2000-2009, Math. Comput. Modelling 51 (2010), no. 9-10, 1071-1081. crossref(new window)

5.
J. R. Artalejo and A. Gomez-Corral, Waiting time in the M/M/c queue with finite retrial group, Bull. Kerala Math. Assoc. 2 (2005), no. 1, 1-17.

6.
J. R. Artalejo and A. Gomez-Corral, Retrial Queueing Systems, Springer, 2008.

7.
Q. H. Choo and B. Conolly, New results in the theory of repeated orders queueing systems, J. Appl. Probab. 16 (1979), no. 3, 631-640. crossref(new window)

8.
G. I. Falin, On the waiting time in a single-channel queueing system with secondary calls, Moscow Univ. Comput. Math. Cybernet. 4 (1977), 83-87.

9.
G. I. Falin, A survey of retrial queues, Queueing Systems Theory Appl. 7 (1990), no. 2, 127-167. crossref(new window)

10.
G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman & Hall, London, 1997.

11.
B. S. Greenberg and R. W. Wolff, An upper bound on the performance of queues with returning customers, J. Appl. Probab. 24 (1987), no. 2, 466-475. crossref(new window)

12.
T. Hanschke, A computational procedure for the variance of the waiting time in the M/M/1/1 queue with repeated attempts, In: Operations Research Proceedings, 525-532, Springer-Verlag, Berlin, 1986.

13.
T. Hanschke, Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts, J. Appl. Probab. 24 (1987), no. 2, 486-494. crossref(new window)

14.
J. Keilson, J. Cozzolino, and H. Young, A service system with unfilled requests repeated, Oper. Res. 16 (1968), 1126-1137. crossref(new window)

15.
J. Kim and B. Kim, Waiting time distribution in an M/PH/1 retrial queue, Performance Evaluation 70 (2013), 286-299. crossref(new window)

16.
V. G. Kulkarni, Letters to the editor, J. Appl. Probab. 19 (1982), 901-905. crossref(new window)

17.
V. G. Kulkarni and H. M. Liang, Retrial queues revisited, In: Frontiers in Queueing:Models and Applications in Science and Engineering (J. H. Dshalalow, ed.), 19-34. CRC Press, Boca Raton, 1997.

18.
M. F. Neuts and B. M. Rao, Numerical investigation of a multiserver retrial model, Queueing Systems Theory Appl. 7 (1990), 169-190. crossref(new window)

19.
R. I. Wilkinson, Theories for toll traffic engineering in the U.S.A., The Bell System Technical Journal 35 (1956), 421-514. crossref(new window)

20.
T. Yang and J. G. C. Templeton, A survey on retrial queues, Queueing Systems Theory Appl. 2 (1987), no. 3, 201-233. crossref(new window)