ON WARPED PRODUCT SPACES WITH A CERTAIN RICCI CONDITION Kim, Byung Hak; Lee, Sang Deok; Choi, Jin Hyuk; Lee, Young Ok;
Abstract
In this paper, we obtain the criteria that the Riemannian manifold B is Einstein or a gradient Ricci soliton from the information of the second derivative of in the warped product space with gradient Ricci solitons. Moreover, we construct new examples of non-Einstein gradient Ricci soliton spaces with an Einstein or non-Einstein gradient Ricci soliton leaf using our main theorems. Finally we also get analogous criteria for the Lorentzian version.
Gradient Ricci Solitons with Structure of Warped Product, Results in Mathematics, 2017, 71, 3-4, 825
References
1.
A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.
2.
H. D. Cao, Geometry of Ricci solitons, Lecture note, Lehigh Univ., 2008.
3.
M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345-367.
4.
M. Fernandez-Lopez and E. Garcia-Rio, A remark on compact Ricci solitons, Math. Ann. 340 (2008), no. 4, 893-896.
5.
R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988.
6.
T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301-307.
7.
T. Ivey, New examples of complete Ricci solitons, Proc. Amer. Math. Soc. 122 (1994), no. 1, 241-245.
8.
B. H. Kim, Warped products with critical Riemannian metric, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 6, 117-118.
9.
G. Perelman, Ricci flow with surgery on three manifolds, arXiv:math. DG/0303109.
10.
P. Petersen and W.Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2085-2092.
11.
R. Pina and K. Tenenblat, On solutions of the Ricci curvature equation and the Einstein equation, Israel J. Math. 171 (2009), 61-76.