JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
Kim, Yongsik;
  PDF(new window)
 Abstract
An efficient and stable point collocation scheme based on a meshfree method is studied for the stationary incompressible Navier-Stokes equations. We describe the diffuse derivatives associated with the moving least square method. Using these diffuse derivatives, we propose a point collocation method to fit in solving the Navier-Stokes equations which improves the stability of the direct point collocation scheme. The convergence of the numerical solution is investigated from numerical examples. The driven cavity ow and the backward facing step ow are implemented for the reliability of the scheme. Also, the viscous ow on complicated geometry is successfully calculated such as the ow past a circular cylinder in duct.
 Keywords
point collocation method;meshfree approximation;Navier-Stokes equations;
 Language
English
 Cited by
 References
1.
N. R. Aluru, A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Engng. 47 (2000), 1083-1121. crossref(new window)

2.
B. F. Armaly, F. Durst, and J. C. Pereira, Experimental and theoritical investigation of backward-facing step flow, J. Fluid Mech. 127 (1983), 473-496. crossref(new window)

3.
S. N. Atluri, H. G. Kim, and J. Y. Cho, A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG) methods, Comput. Mech. 24 (1999), 348-372. crossref(new window)

4.
H. J. Choe, D. W. Kim, H. H. Kim, and Y. S. Kim, Meshless method for the stationary incompressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 4, 495-526. crossref(new window)

5.
H. J. Choe, D. W. Kim, and Y. S. Kim, Meshfree method for the non-stationary incom- pressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 1, 17-39. crossref(new window)

6.
C. A. Duarte and J. T. Oden, An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 237-262. crossref(new window)

7.
J. Furst and T. Sonar, On meshless collocation approximations of conservation laws: Preliminary investigations on positive schemes and dissipation models, Z. Angew. Math. Mech. 81 (2001), no. 6, 403-415. crossref(new window)

8.
R. A. Gingold and J. J. Monaghan, Smoothed Particle Hydrodynamics: theory and ap- plication to non-spherical stars, Monthly Notices of the Royal Astronomical Society 181 (1977), 275-389.

9.
F. C. Gunther and W. K. Liu, Implementation of boundary conditions for meshless methods, Comput. Methods Appl. Mech. Engrg. 163 (1998), no. 1-4, 205-230. crossref(new window)

10.
D. W. Kim and H. K. Kim, Point collocation method based on the FMLSRK approximation for electromagnetic field analysis, IEEE Trans. on Magnetics 40 (2004), 1029-1032. crossref(new window)

11.
D. W. Kim and Y. S. Kim, Point collocation methods using the fast moving least square reproducing kernel approximation, Internat. J. Numer. Methods Engrg. 56 (2003), no. 10, 1445-1464. crossref(new window)

12.
Y. S. Kim, D. W. Kim, S. Jun, and J. H. Lee, Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engng. 196 (2007), no. 33-34, 3095-3109. crossref(new window)

13.
S. Li and W. K. Liu, Synchronized reproducing kernel interpolation via multiple wavelet expansion, Comput. Mech. 21 (1998), 28-47. crossref(new window)

14.
S. Li and W. K. Liu, Reproducing kernel hierarchical partition of unity. I. Formulation and theory, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 251-288. crossref(new window)

15.
S. Li and W. K. Liu, Reproducing kernel hierarchical partition of unity. II. Applications, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 289-317. crossref(new window)

16.
W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, Reproducing kernel particle methods for structural dynamics, Internat. J. Numer. Methods Engrg. 38 (1995), no. 10, 1655-1679. crossref(new window)

17.
W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids 20 (1995), no. 8-9, 1081-1106. crossref(new window)

18.
W. K. Liu, S. Li, and T. Belytschko, Moving least-square reproducing kernel methods. I. Methodology and convergence, Comput. Methods Appl. Mech. Engrg. 143 (1997), no. 1-2, 113-154. crossref(new window)

19.
Y. Y. Lu, T. Belytschko, and L. Gu, A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Engrg. 113 (1994), no. 3-4, 397-414. crossref(new window)

20.
Y. Luo and U. Haussler-Combe, A generalized nite-difference method based on min- imizing global residual, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 13-14, 1421-1438. crossref(new window)

21.
J. M. Melenk and I. Babuska, The partition of unity nite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 289-314. crossref(new window)

22.
B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech. 10 (1992), 307-318. crossref(new window)

23.
X. Zhang, X. Liu, K. Song, and M. W. Lu, Least-square collocation meshless method, Internat. J. Numer. Methods Engrg. 51 (2001), no. 9, 1089-1100. crossref(new window)

24.
Y. Zhao and B. Zhang, A high-order characteristics upwind FV method for incompressible ow and heat transfer simulation on unstructured grids, Comput. Methods Appl. Mech. Engrg. 190 (2000), no. 5-7, 733-756. crossref(new window)

25.
T. Zhu, J. Zhang, and S. N. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems, Comput. Mech. 22 (1998), no. 2, 174-186. crossref(new window)