JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS
Han, Yuzhu; Gao, Wenjie;
  PDF(new window)
 Abstract
This paper deals with some types of semilinear parabolic systems with localized or nonlocal sources and nonlocal boundary conditions. The authors first derive some global existence and blow-up criteria. And then, for blow-up solutions, they study the global blow-up property as well as the precise blow-up rate estimates, which has been seldom studied until now.
 Keywords
localized source;nonlocal source;nonlocal boundary condition;blow-up profile;blow-up rate;
 Language
English
 Cited by
 References
1.
J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a non-local forcing, Math. Methods Appl. Sci. 20 (1997), no. 13, 1069-1087. crossref(new window)

2.
J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.

3.
K. Bimpong-Bota, P. Ortoleva, and J. Ross, Far-from-equilibrium phenomena at local cites of reaction, J. Chem. Phys. 60 (1974), 3124-3133. crossref(new window)

4.
D. E. Carlson, Linear thermoelasticity, Encyclopedia, vol. vIa/2, Springer, Berlin, 1972.

5.
J. M. Chadam, A. Peirce, and H. M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992), no. 2 313-328. crossref(new window)

6.
Y. Chen and H. Gao, Asymptotic blow-up behavior for a nonlocal degenerate parabolic equation, J. Math. Anal. Appl. 330 (2007), no. 2, 852-863. crossref(new window)

7.
A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math. 44 (1986), no. 3, 401-407.

8.
A. Friedman and J. B. Mcleod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425-447. crossref(new window)

9.
W. A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. 40 (1982), no. 3, 319-330.

10.
W. A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Quart. Appl. Math. 40 (1983), no. 4, 468-475.

11.
K. Deng, Comparison principle for some nonlocal problems, Quart. Appl. Math. 50 (1992), no. 3, 517-522.

12.
K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85-126. crossref(new window)

13.
Y. Han and W. Gao, Global existence and blow-up for a class of degenerate parabolic systems with localized source, Acta Appl. Math. 112 (2010), no. 2, 251-261. crossref(new window)

14.
L. H. Kong and M. X. Wang, Global existence and blow-up of solutions to a parabolic system with nonlocal sources and boundaries, Sci. China Ser. A 50 (2007), no. 9, 1251-1266. crossref(new window)

15.
H. A. Levine, The role of critical exponents in blow up theorems, SIAM Rev. 32 (1990), 262-288. crossref(new window)

16.
H. L. Li and M. X. Wang, Properties of blow-up solutions to a parabolic system with nonlinear localized terms, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 683-700. crossref(new window)

17.
P. Ortoleva and J. Ross, Local structures in chemical reactions with heterogeneous catal-ysis, J. Chem. Phys. 56 (1972), 4397-4400. crossref(new window)

18.
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992.

19.
C. V. Pao, Dynamics of reaction-diffusion equations with nonlocal boundary conditions, Quart. Appl. Math. 50 (1995), no. 1, 173-186.

20.
C. V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 88 (1998), no. 1, 225-238. crossref(new window)

21.
C. V. Pao, Numerical solutions of reaction-diffusion equations with nonlocal boundary con-ditions, J. Comput. Appl. Math. 136 (2001), no. 1-2, 227-243. crossref(new window)

22.
S. Seo, Blowup of solutions to heat equations with nonlocal boundary conditions, Kobe J. Math. 13 (1996), no. 2, 123-132.

23.
S. Seo, Global existence and decreasing property of boundary values of solutions to parabolic equations with nonlocal boundary conditions, Pacific J. Math. 193 (2000), no. 1, 219-226. crossref(new window)

24.
P. Souplet, Blow up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), no. 6, 1301-1334. crossref(new window)

25.
P. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations 153 (1999), no. 2, 374-406. crossref(new window)

26.
Y. L. Wang, C. L. Mu, and Z. Y. Xiang, Blowup of solutions to a porous medium equation with nonlocal boundary condition, Appl. Math. Comput. 192 (2007), no. 2, 579-585. crossref(new window)

27.
M. X. Wang and Y. M. Wang, Properties of positive solutions for non-local reaction- diffusion problems, Math. Methods Appl. Sci. 19 (1996), no. 14, 1141-1156. crossref(new window)

28.
Y. L. Wang and Z. Y. Xiang, Blowup analysis for a semilinear parabolic system with nonlocal boundary condition, Boundary Value Problems 2009 (2009), Article ID 516390, 14 pages.

29.
Z. Y. Xiang, X. G. Hu, and C. L. Mu, Neumann problem for reaction-diffusion systems with nonlocal nonlinear sources, Nonlinear Anal. 61 (2005), no. 7, 1209-1224. crossref(new window)

30.
H. M. Yin, On a class of parabolic equations with nonlocal boundary conditions, J. Math. Anal. Appl. 294 (2004), no. 2, 712-728. crossref(new window)

31.
Y. F. Yin, On nonlinear parabolic equations with nonloal boundary conditions, J. Math. Anal. Appl. 185 (1994), no. 1, 161-174. crossref(new window)

32.
S. N. Zheng and L. H. Kong, Roles of weight functions in a nonlinear nonlocal parabolic system, Nonlinear Anal. 68 (2008), no. 8, 2406-2416. crossref(new window)