JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GLOBAL ASYMPTOTIC STABILITY OF POSITIVE STEADY STATES OF AN n-DIMENSIONAL RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH DIFFUSION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GLOBAL ASYMPTOTIC STABILITY OF POSITIVE STEADY STATES OF AN n-DIMENSIONAL RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH DIFFUSION
Zhou, Jun;
  PDF(new window)
 Abstract
The main concern of this paper is to study the dynamics of an n-dimensional ratio-dependent predator-prey system with diffusion. We study the dissipativeness, persistence of the system and it is shown that the unique positive constant steady state is globally asymptotically stable under some assumptions.
 Keywords
ratio-dependent response function;global asymptotic stability;iteration method;
 Language
English
 Cited by
 References
1.
H. R. Acakaya, R. Arditi, and L. R. Ginzburg, Ratio-dependent prediction: an abstraction that works, Ecology 76 (1995), 995-1004. crossref(new window)

2.
S. Aly, I. Kim, and D. Sheen, Turing instability for a ratio-dependent predator-prey model with diffusion, Appl. Math. Comp. 217 (2011), no. 17, 7265-7281. crossref(new window)

3.
R. Arditi and A. A. Berryman, The biological control paradox, Trends Ecol. Evol. 6 (1991), 32. crossref(new window)

4.
R. Arditi, L. R. Ginzburg, and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models, Am. Nat. 138 (1991), 1287-1296. crossref(new window)

5.
M. Baurmann, T. Gross, and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol. 245 (2007), no. 2, 220-229. crossref(new window)

6.
R. G. Casten and C. F. Holland, Stability properties of solutions to systems of reaction-diffusion equations, SIAM J. Appl. Math. 33 (1977), no. 2, 353-364. crossref(new window)

7.
C. Cosner, D. L. DeAngelis, J. S. Ault, and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol. 56 (1999), 65-75. crossref(new window)

8.
C. Duque, K. Kiss, and M. Lizana, On the dynamics of an n-dimensional ratio-dependent predator-prey system with diffusion, Appl. Math. Comp. 208 (2009), no. 1, 98-105. crossref(new window)

9.
C. Duque and M. Lizana, Global asymptotic stability of a ratio dependent predator prey system with diffusion and delay, Period. Math. Hungar. 56 (2008), no. 1, 11-23. crossref(new window)

10.
P. Grindrod, Patterns and Waves, Clarendon Press, Oxford, 1991.

11.
K. Kiss, n-Dimensional ratio-dependent predator-prey systems with diffusion, Appl. Math. Comput. 205 (2008), no. 2, 325-335. crossref(new window)

12.
K. Kiss and Kovacs, Qualitative behavior of n-dimensional ratio-dependent predator-prey systems, Appl. Math. Comp. 199 (2008), 535-546. crossref(new window)

13.
K. Kiss and J. Toth, n-dimensional ratio-dependent predator-prey systems with memory, Diff. Equ. Dyn. Syst. 17 (2009), no. 1-2, 17-35. crossref(new window)

14.
B. Mukhopadhyay and R. Bhattacharyya, Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system, Bull. Math. Biol. 68 (2006), no. 2, 293-313. crossref(new window)

15.
A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Second ed., Springer, Berlin, 2000.

16.
P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 919-942. crossref(new window)

17.
M. X. Wang and Peter Y. H. Pang, Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model, Appl. Math. Lett. 21 (2008), no. 11, 1215-1220. crossref(new window)

18.
Q. X. Ye, Z. Y. Li, M. X. Wang, and Y. P. Wu, An Introduction to Reaction-Diffusion Equations, Second, edition (in chinese), Scientific Press, 2011.

19.
J. Zhou and C. L. Mu, Coexistence states of a Holling type-II predator-prey system, J. Math. Anal. Appl. 369 (2010), no. 2, 555-563. crossref(new window)

20.
J. Zhou and C. L. Mu, Positive solutions for a three-trophic food chain model with diffusion and Beddington-Deangelis functional response, Nonlinear Anal. Real World Appl. 12 (2011), no. 2, 902-917. crossref(new window)

21.
J. Zhou and C. L. Mu, Coexistence of a diffusive predator-prey model with Holling type-II functional response and density dependent mortality, J. Math. Anal. Appl. 385 (2012), no. 2, 913-927. crossref(new window)