JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTRINSIC SQUARE FUNCTIONS ON FUNCTIONS SPACES INCLUDING WEIGHTED MORREY SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INTRINSIC SQUARE FUNCTIONS ON FUNCTIONS SPACES INCLUDING WEIGHTED MORREY SPACES
Feuto, Justin;
  PDF(new window)
 Abstract
We prove that the intrinsic square functions including Lusin area integral and Littlewood-Paley -function as defined by Wilson, are bounded in a class of function spaces include weighted Morrey spaces. The corresponding commutators generated by BMO functions are also considered.
 Keywords
amalgams spaces;Morrey spaces;commutator;g-function of Littlewood-Paley;Lusin area function;
 Language
English
 Cited by
1.
Some estimates of intrinsic square functions on the weighted Herz-type Hardy spaces, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
 References
1.
J. Feuto, Norms inequalities in some subspaces of Morrey space, Preprint.

2.
F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 273-279.

3.
R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.

4.
D. Fan, Sh. Lu, and D. Yang, Regularity in Morrey spaces of strong solutions to non-divergence elliptic equations with VMO coefficients, Georgian Math. J. 5 (1998), no. 5, 425-440. crossref(new window)

5.
J. Feuto, I. Fofana, and K. Koua, Espaces de fonctions a moyenne fractionnaire integrable sur les groupes localement compacts, Afrika Mat. (3) 15 (2003), 73-91.

6.
J. Feuto, I. Fofana, and K. Koua, Weighted norms inequalities for a maximal operator in some subspace of amalgams, Canad. Math. Bull. 53 (2010), no. 2, 263-277. crossref(new window)

7.
J. Feuto, I. Fofana, and K. Koua, Integrable fractional mean functions on spaces of homogeneous type, Afr. Diaspora J. Math. 9 (2010), no. 1, 8-30.

8.
I. Fofana, Etude d'une classe d'espaces de fonctions contenant les espaces de Lorentz, Afrika Mat. (2) 1 (1988), no. 1, 29-50.

9.
J. J. F. Fournier and J. Stewart, Amalgams of $L^p$ and $L^q$, Bull. Amer. Math. Soc. 13 (1985), no. 1, 1-21. crossref(new window)

10.
L. Grafakos, Modern Fourier Analysis, Second Edition, Springer, 2009.

11.
F. Holland, Harmonic Analysis on amalgams of $L^p$ and ${\ell}^q$, J. London Math. Soc. (2) 10 (1975), 295-305.

12.
F. John and L. Nirenberg,On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. crossref(new window)

13.
C. B. Morrey,On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126-166. crossref(new window)

14.
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. crossref(new window)

15.
Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282 (2009), no. 2, 219-231; DOI 10.1002/mana.200610733. crossref(new window)

16.
H. Wang, Intrinsic square functions on the weighted Morrey spaces, J. Math. Anal. Appl. 396 (2012), no. 1, 302-314. crossref(new window)

17.
M.Wilson, The intrinsic square function, Rev. Mat. Iberoam. 23 (2007), no. 3, 771-791.

18.
M.Wilson, Weighted Littlewood-Paley Theory and Exponential-Square Integrability, Lecture Notes in Math, Vol 1924, Springer-Verlag, 2007.