JOURNAL BROWSE
Search
Advanced SearchSearch Tips
KNOTS WITH ARBITRARILY HIGH DISTANCE BRIDGE DECOMPOSITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
KNOTS WITH ARBITRARILY HIGH DISTANCE BRIDGE DECOMPOSITIONS
Ichihara, Kazuhiro; Saito, Toshio;
  PDF(new window)
 Abstract
We show that for any given closed orientable 3-manifold M with a Heegaard surface of genus g, any positive integers b and n, there exists a knot K in M which admits a (g, b)-bridge splitting of distance greater than n with respect to the Heegaard surface except for (g, b)
 Keywords
knot;Heegaard splitting;bridge decomposition;distance;
 Language
English
 Cited by
1.
Exceptional and cosmetic surgeries on knots, Mathematische Annalen, 2017, 367, 1-2, 581  crossref(new windwow)
2.
Bridge splittings of links with distance exactly n, Topology and its Applications, 2015, 196, 608  crossref(new windwow)
 References
1.
A. Abrams and S. Schleimer, Distances of Heegaard splittings, Geom. Topol. 9 (2005), 95-119.

2.
R. Blair, M. Tomova, and M. Yoshizawa, High distance bridge surfaces, Algebr. Geom. Topol. 13 (2013), 2925-2946. crossref(new window)

3.
M. M. Campisi and M. Rathbun, High distance knots in closed 3-manifolds, J. Knot Theory Ramifications 21 (2012), no. 2, 1250017, 20 pp.

4.
A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275-283. crossref(new window)

5.
T. Evans, High distance Heegaard splittings of 3-manifolds, Topology Appl. 153 (2006), 2631-2647. crossref(new window)

6.
A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Asterisque, Vols. 66 and 67, 1979.

7.
W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, pp. 39-98, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968.

8.
W. J. Harvey, Boundary structure of the modular group, In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (ed. by I. Kra and B. Maskit), Ann. of Math. Stud. 97, Princeton University Press, Princeton, N.J., 1981.

9.
W. J. Harvey, Modular groups and representation spaces, In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 245-251, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981.

10.
A. Hatcher and W. Thurston, A presentation for the mapping class group, Topology 19 (1980), no. 3, 221-237. crossref(new window)

11.
P. Heegaard, Forstudier til en topologisk Teori for de algebraiske Fladers Sammenhang, Thesis, (1898) (in Danish).

12.
J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001), no. 3, 631-657. crossref(new window)

13.
K. Ichihara and K. Motegi, Stably filling curves on a surface, Kobe J. Math. 19 (2002), no. 1-2, 61-66.

14.
K. Ichihara and K. Motegi, Braids and Nielsen-Thurston types of automorphisms of punctured surfaces, Tokyo J. Math. 28 (2005), no. 2, 527-538. crossref(new window)

15.
K. Ichihara and K. Motegi, Hyperbolic sections in surface bundles, Topology Appl. 154 (2007), no. 7, 1398-1406. crossref(new window)

16.
K. Ichihara and K. Motegi, Hyperbolic sections in Seifert fibered, surface bundles, Q. J. Math. 60 (2009), no. 4, 475-486. crossref(new window)

17.
T. Kobayashi, Heights of simple loops and pseudo-Anosov homeomorphisms, In Braids (Santa Cruz, CA, 1986), 327-338, Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988. crossref(new window)

18.
I. Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), no. 3-4, 231-270. crossref(new window)

19.
H. A. Masur and Y. N. Minsky, Geometry of the complex of curves I. hyperbolicity, Invent. Math. 138 (1999), no. 1, 103-149. crossref(new window)

20.
Y. N. Minsky, Curve complexes, surfaces and 3-manifolds, International Congress of Mathematicians. Vol. II, 1001-1033, Eur. Math. Soc., Zrich, 2006.

21.
Y. N. Minsky, Y. Moriah, and S. Schleimer, High distance knots, Algebr. Geom. Topol. 7 (2007), 1471-1483. crossref(new window)

22.
E. E. Moise, Ane structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96-114. crossref(new window)

23.
T. Saito, Genus one 1-bridge knots as viewed from the curve complex, Osaka J. Math. 41 (2004), no. 2, 427-454.

24.
T. Saito, Meridional destabilizing number of knots, Algebr. Geom. Topol. 11 (2011), no. 2, 1205-1242. crossref(new window)

25.
W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431. crossref(new window)

26.
M. Tomova, Multiple Bridge surfaces restrict knot distance, Algebr. Geom. Topol. 7 (2007), 957-1006. crossref(new window)