JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED HYERS-ULAM-RASSIAS STABILITY FOR A GENERAL ADDITIVE FUNCTIONAL EQUATION IN QUASI-β-NORMED SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED HYERS-ULAM-RASSIAS STABILITY FOR A GENERAL ADDITIVE FUNCTIONAL EQUATION IN QUASI-β-NORMED SPACES
Moradlou, Fridoun; Rassias, Themistocles M.;
  PDF(new window)
 Abstract
In this paper, we investigate the generalized HyersUlam-Rassias stability of the following additive functional equation $$2\sum_{j
 Keywords
generalized Hyers-Ulam stability;contractively subadditive;expansively superadditive;quasi--normed space;(, p)-Banach space;
 Language
English
 Cited by
 References
1.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.

2.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. crossref(new window)

3.
Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.

4.
C. Borelli and G. L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995), no. 2, 229-236. crossref(new window)

5.
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. crossref(new window)

6.
L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 4, 7 pp.

7.
L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara, Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.

8.
L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004.

9.
S. Czerwik, The stability of the quadratic functional equation, In: Th. M. Rassias, J. Tabor (Eds.), Stability of Mappings of Hyers-Ulam Type, pp. 81-91, Hadronic Press, Florida, 1994.

10.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. crossref(new window)

11.
P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010), no. 2, 11-18.

12.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. crossref(new window)

13.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston,Basel, Berlin, 1998.

14.
K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118.

15.
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.

16.
S.-M. Jung and J. M. Rassias, A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory Appl. 2008 (2008), Art. ID 945010, 7 pp.

17.
Pl. Kannappan,Functional Equations and Inequalities with Applications, Springer, New York, 2009.

18.
G. H. Kim, On the stability of the quadratic mapping in normed spaces, Int. J. Math. Math. Sci. 25 (2001), no. 4, 217-229. crossref(new window)

19.
F. Moradlou, Additive functional inequalities and derivations on Hilbert C*-modules, Glasg. Math. J. 55 (2013), 341-348. crossref(new window)

20.
F. Moradlou, A. Najati, and H. Vaezi, Stability of homomorphisms and derivations on C*-ternary rings associated to an Euler-Lagrange type additive mapping, Results Math. 55 (2009), no. 3-4, 469-486. crossref(new window)

21.
F. Moradlou, H. Vaezi, and G. Z. Eskandani, Hyers-Ulam-Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. Math. 6 (2009), no. 2, 233-248. crossref(new window)

22.
F. Moradlou, H. Vaezi, and C. Park, Fixed points and stability of an additive functional equation of n-Apollonius type in C*-algebras, Abstr. Appl. Anal. 2008 (2008), Art. ID 672618, 13 pp.

23.
F. Moradlou, H. Vaezi, and C. Park, Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces, A Fixed Point Approach, Commun. Korean Math. Soc. 28 (2013), no. 2, 319-333. crossref(new window)

24.
P. M. Pardalos, P. G. Georgiev, and H. M. Srivastava (eds.), Nonlinear Analysis, Stability, Approximation and Inequalities. In honor of Themistocles M. Rassias on the occasion of his 60th birthday, Springer, New York, 2012.

25.
C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), no. 2, 711-720. crossref(new window)

26.
C. Park, On an approximate automorphism on a C*-algebra, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1739-1745. crossref(new window)

27.
C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), no. 1, 79-97. crossref(new window)

28.
C. Park and Th. M. Rassias, Hyers-Ulam stability of a generalized Apollonius type quadratic mapping, J. Math. Anal. Appl. 322 (2006), no. 1, 371-381. crossref(new window)

29.
C. Park and Th. M. Rassias, Homomorphisms in C*-ternary algebras and JB*-triples, J. Math. Anal. Appl. 337 (2008), no. 1, 13-20. crossref(new window)

30.
V. Radu, The fixed point alternative and stability of functional equations, Fixed Point Theory IV(1) (2003), no. 1, 91-96.

31.
J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), no. 1, 126-130. crossref(new window)

32.
J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), no. 4, 445-446.

33.
J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), no. 3, 268-273. crossref(new window)

34.
J. M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J. 9 (2005), no. 7, 190-199.

35.
J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-$\beta$-normed spaces, J. Math. Anal. Appl. 356 (2009), no. 1, 302-309. crossref(new window)

36.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. crossref(new window)

37.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378. crossref(new window)

38.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284. crossref(new window)

39.
Th. M. Rassias and J. Brzdek (eds.), Functional Equations in Mathematical Analysis, Springer, New York, 2012.

40.
S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.

41.
F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. crossref(new window)

42.
S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.