JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE SECOND APPROXIMATE MATSUMOTO METRIC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE SECOND APPROXIMATE MATSUMOTO METRIC
Tayebi, Akbar; Tabatabaeifar, Tayebeh; Peyghan, Esmaeil;
  PDF(new window)
 Abstract
In this paper, we study the second approximate Matsumoto metric F = on a manifold M. We prove that F is of scalar flag curvature and isotropic S-curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.
 Keywords
isotropic Berwald curvature;S-curvature;almost isotropic flag curvature;
 Language
English
 Cited by
1.
S-curvature for a new class of $$(\alpha , \beta )$$ ( α , β ) -metrics, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111, 4, 1187  crossref(new windwow)
 References
1.
S. Bacso and M. Matsumoto, On Finsler spaces of Douglas typea generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), no. 3-4, 385-406.

2.
D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.

3.
X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66 (2005), no. 3-4, 503-512.

4.
X. Cheng and Z. Shen, Randers metric with special curvature properties, Osaka. J. Math. 40 (2003), no. 1, 87-101.

5.
X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel. J. Math. 169 (2009), 317-340. crossref(new window)

6.
X. Cheng, H. Wang, and M. Wang, (${\alpha}$,${\beta}$)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen. 72 (2008), no. 3-4, 475-485.

7.
N. Cui, On the S-curvature of some (${\alpha}$,${\beta}$)-metrics, Acta. Math. Scientia, Series: A. 26 (2006), no. 7, 1047-1056.

8.
I. Y. Lee and M. H. Lee, On weakly-Berwald spaces of special (${\alpha}$,${\beta}$)-metrics, Bull. Korean Math. Soc. 43 (2006), no. 2, 425-441. crossref(new window)

9.
M.Matsumoto, Theory of Finsler spaces with (${\alpha}$,${\beta}$)-metric, Rep. Math. Phys. 31 (1992), no. 1, 43-84. crossref(new window)

10.
B. Najafi, Z. Shen, and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131 (2008), 87-97. crossref(new window)

11.
H. S. Park and E. S. Choi, On a Finsler spaces with a special (${\alpha}$,${\beta}$)-metric, Tensor (N.S.) 56 (1995), no. 2, 142-148.

12.
H. S. Park and E. S. Choi, Finsler spaces with an approximate Matsumoto metric of Douglas type, Comm. Korean. Math. Soc. 14 (1999), no. 3, 535-544.

13.
H. S. Park and E. S. Choi, Finsler spaces with the second approximate Matsumoto metric, Bull. Korean. Math. Soc. 39 (2002), no. 1, 153-163. crossref(new window)

14.
H. S. Park, I. Y. Lee, and C. K. Park, Finsler space with the general approximate Matsumoto metric, Indian J. Pure. Appl. Math. 34 (2002), no. 1, 59-77.

15.
H. S. Park, I. Y. Lee, H. Y. Park, and B. D. Kim, Projectively flat Finsler space with an approximate Matsumoto metric, Comm. Korean. Math. Soc. 18 (2003), no. 3, 501-513. crossref(new window)

16.
Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.

17.
A. Tayebi and B. Najafi, On isotropic Berwald metrics, Ann. Polon. Math. 103 (2012), no. 2, 109-121. crossref(new window)

18.
A. Tayebi, E. Peyghan, and H. Sadeghi, On Matsumoto-type Finsler metrics, Nonlinear Anal. Real World Appl. 13 (2012), no. 6, 2556-2561. crossref(new window)

19.
A. Tayebi and M. Rafie Rad, S-curvature of isotropic Berwald metrics, Sci. China Ser. A 51 (2008), no. 12, 2198-2204. crossref(new window)

20.
C.-H. Xiang and X. Cheng, On a class of weakly-Berwald (${\alpha}$,${\beta}$)-metrics, J. Math. Res. Expos. 29 (2009), no. 2, 227-236.